Algorithms \& Models of Computation

CS/ECE 374, Fall 2020

23.3.3

If there is a satisfying assignment, then there is a Hamiltonian cycle

From satisfying assignment to Hamiltonian cycle: By figure

3SAT formula φ :

$$
\begin{aligned}
\varphi= & \left(x_{1} \vee \neg x_{2} \vee x_{4}\right) \\
& \wedge\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{3}\right)
\end{aligned}
$$

From satisfying assignment to Hamiltonian cycle: By figure

3SAT formula φ :

$$
\begin{aligned}
\varphi= & \left(x_{1} \vee \neg x_{2} \vee x_{4}\right) \\
& \wedge\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{3}\right)
\end{aligned}
$$

From satisfying assignment to Hamiltonian cycle: By figure

3SAT formula φ :

$$
\begin{aligned}
\varphi= & \left(x_{1} \vee \neg x_{2} \vee x_{4}\right) \\
& \wedge\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{3}\right)
\end{aligned}
$$

A satisfying assignment:

$$
x_{1}=0, x_{2}=1, x_{3}=0, x_{4}=1
$$

From satisfying assignment to Hamiltonian cycle: By figure

3SAT formula φ :

$$
\begin{aligned}
\varphi= & \left(x_{1} \vee \neg x_{2} \vee x_{4}\right) \\
& \wedge\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{3}\right)
\end{aligned}
$$

A satisfying assignment:

$$
x_{1}=0, x_{2}=1, x_{3}=0, x_{4}=1
$$

From satisfying assignment to Hamiltonian cycle: By figure

3SAT formula φ :

$$
\begin{aligned}
\varphi= & \left(x_{1} \vee \neg x_{2} \vee x_{4}\right) \\
& \wedge\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{3}\right)
\end{aligned}
$$

A satisfying assignment:

$$
x_{1}=0, x_{2}=1, x_{3}=0, x_{4}=1
$$

From satisfying assignment to Hamiltonian cycle: By figure

3SAT formula φ :

$$
\begin{aligned}
\varphi= & \left(x_{1} \vee \neg x_{2} \vee x_{4}\right) \\
& \wedge\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{3}\right)
\end{aligned}
$$

A satisfying assignment:

$$
x_{1}=0, x_{2}=1, x_{3}=0, x_{4}=1
$$

From satisfying assignment to Hamiltonian cycle: By figure

3SAT formula φ :

$$
\begin{aligned}
\varphi= & \left(x_{1} \vee \neg x_{2} \vee x_{4}\right) \\
& \wedge\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{3}\right)
\end{aligned}
$$

A satisfying assignment:

$$
x_{1}=0, x_{2}=1, x_{3}=0, x_{4}=1
$$

Reduction: Satisfying assignment \Rightarrow Hamiltonian cycle

Satisfying assignment: $\boldsymbol{x}_{\mathbf{1}}=\mathbf{0}, \boldsymbol{x}_{2}=\mathbf{1}, \boldsymbol{x}_{\mathbf{3}}=\mathbf{0}, \boldsymbol{x}_{\mathbf{4}}=\mathbf{1}$

Reduction: Satisfying assignment \Rightarrow Hamiltonian cycle

$$
x_{1} \vee \neg x_{2} \vee x_{4}
$$

$$
\neg x_{1} \vee \neg x_{2} \vee \neg x_{3}
$$

Satisfying assignment: $\boldsymbol{x}_{\mathbf{1}}=\mathbf{0}, \boldsymbol{x}_{\mathbf{2}}=\mathbf{1}, \boldsymbol{x}_{\mathbf{3}}=\mathbf{0}, \boldsymbol{x}_{\mathbf{4}}=\mathbf{1}$

Reduction: Satisfying assignment \Rightarrow Hamiltonian cycle

$$
x_{1} \vee \neg x_{2} \vee x_{4}
$$

$$
\neg x_{1} \vee \neg x_{2} \vee \neg x_{3}
$$

Satisfying assignment: $\boldsymbol{x}_{\mathbf{1}}=\mathbf{0}, \boldsymbol{x}_{\mathbf{2}}=\mathbf{1}, \boldsymbol{x}_{\mathbf{3}}=\mathbf{0}, \boldsymbol{x}_{\mathbf{4}}=\mathbf{1}$

Reduction: Satisfying assignment \Rightarrow Hamiltonian cycle

$$
x_{1} \vee \neg x_{2} \vee x_{4}
$$

$$
\neg x_{1} \vee \neg x_{2} \vee \neg x_{3}
$$

Satisfying assignment: $\boldsymbol{x}_{\mathbf{1}}=\mathbf{0}, \boldsymbol{x}_{\mathbf{2}}=\mathbf{1}, \boldsymbol{x}_{\mathbf{3}}=\mathbf{0}, \boldsymbol{x}_{\mathbf{4}}=\mathbf{1}$

Reduction: Satisfying assignment \Rightarrow Hamiltonian cycle

$$
x_{1} \vee \neg x_{2} \vee x_{4}
$$

$$
\neg x_{1} \vee \neg x_{2} \vee \neg x_{3}
$$

Satisfying assignment: $\boldsymbol{x}_{1}=\mathbf{0}, \boldsymbol{x}_{2}=\mathbf{1}, \boldsymbol{x}_{3}=\mathbf{0}, \boldsymbol{x}_{4}=\mathbf{1}$ Conclude: If φ has a satisfying assignment then there is an Hamiltonian cycle in G_{φ}.

Correctness Proof

Lemma 23.1.

φ has a satisfying assignment $\boldsymbol{\alpha} \Longrightarrow \boldsymbol{G}_{\varphi}$ has a Hamiltonian cycle.

Proof.

Let \boldsymbol{a} be the satisfying assignment for φ. Define Hamiltonian cycle as follows

- If $\boldsymbol{\alpha}\left(\boldsymbol{x}_{\boldsymbol{i}}\right)=\mathbf{1}$ then traverse path \boldsymbol{i} from left to right
- If $\boldsymbol{\alpha}\left(\boldsymbol{x}_{\boldsymbol{i}}\right)=\mathbf{0}$ then traverse path \boldsymbol{i} from right to left
- For each clause, path of at least one variable is in the "right" direction to splice in the node corresponding to clause
- Clearly, resulting cycle is Hamiltonian.

THE END

(for now)

