Algorithms \& Models of Computation
CS/ECE 374, Fall 2020
23.3

NP-Completeness of Hamiltonian Cycle

Algorithms \& Models of Computation

CS/ECE 374, Fall 2020

23.3.1

Reduction from 3SAT to Hamiltonian Cycle:
Basic idea

Directed Hamiltonian Cycle

Input Given a directed graph $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{E})$ with \boldsymbol{n} vertices
Goal Does \boldsymbol{G} have a Hamiltonian cycle?

- A Hamiltonian cycle is a cycle in the graph that visits every vertex in G exactly once

Directed Hamiltonian Cycle

Input Given a directed graph $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{E})$ with \boldsymbol{n} vertices
Goal Does \boldsymbol{G} have a Hamiltonian cycle?

- A Hamiltonian cycle is a cycle in the graph that visits every vertex in G exactly once

Is the following graph Hamiltonian?
(A) Yes.

(B) No.

Directed Hamiltonian Cycle is NP-Complete

- Directed Hamiltonian Cycle is in NP: exercise
- Hardness: We will show 3SAT \leq_{p} Directed Hamiltonian Cycle .

Reduction construction

From 3SAT to Hamiltonian cycle in directed graph

1. To show reduction, we next describe an algorithm:

- Input: 3SAT formula φ
- Output: A graph \boldsymbol{G}_{φ}.
- Running time is polynomial.
- Requirement: $\boldsymbol{\varphi}$ is satisfiable $\Longleftrightarrow \boldsymbol{G}_{\varphi}$ is Hamiltonian.

2. Given 3SAT formula φ create a graph G_{φ} such that

- G_{φ} has a Hamiltonian cycle if and only if φ is satisfiable
- G_{φ} should be constructible from φ by a polynomial time algorithm \mathcal{A}

3. Notation: φ has n variables $x_{1}, x_{2}, \ldots, x_{n}$ and m clauses $C_{1}, C_{2}, \ldots, C_{m}$.

Reduction construction

From 3SAT to Hamiltonian cycle in directed graph

1. To show reduction, we next describe an algorithm:

- Input: 3SAT formula φ
- Output: A graph \boldsymbol{G}_{φ}.
- Running time is polynomial.
- Requirement: φ is satisfiable $\Longleftrightarrow \boldsymbol{G}_{\varphi}$ is Hamiltonian.

2. Given 3SAT formula φ create a graph G_{φ} such that
$\Rightarrow G_{\varphi}$ has a Hamiltonian cycle if and only if φ is satisfiable

- G_{φ} should be constructible from φ by a polynomial time algorithm \mathcal{A}

3. Notation: φ has \boldsymbol{n} variables $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{n}$ and \boldsymbol{m} clauses $\boldsymbol{C}_{1}, \boldsymbol{C}_{2}, \ldots, \boldsymbol{C}_{m}$

Reduction construction

From 3SAT to Hamiltonian cycle in directed graph

1. To show reduction, we next describe an algorithm:

- Input: 3SAT formula φ
- Output: A graph \boldsymbol{G}_{φ}.
- Running time is polynomial.
- Requirement: φ is satisfiable $\Longleftrightarrow \boldsymbol{G}_{\varphi}$ is Hamiltonian.

2. Given 3SAT formula φ create a graph G_{φ} such that

- \boldsymbol{G}_{φ} has a Hamiltonian cycle if and only if φ is satisfiable
$\rightarrow G_{\varphi}$ should be constructible from φ by a polynomial time algorithm \mathcal{A}

3. Notation: φ has \boldsymbol{n} variables $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{\boldsymbol{n}}$ and \boldsymbol{m} clauses $C_{1}, C_{2}, \ldots, \boldsymbol{C}_{\boldsymbol{m}}$.

Reduction construction

From 3SAT to Hamiltonian cycle in directed graph

1. To show reduction, we next describe an algorithm:

- Input: 3SAT formula φ
- Output: A graph \boldsymbol{G}_{φ}.
- Running time is polynomial.
- Requirement: φ is satisfiable $\Longleftrightarrow \boldsymbol{G}_{\varphi}$ is Hamiltonian.

2. Given 3SAT formula φ create a graph G_{φ} such that

- \boldsymbol{G}_{φ} has a Hamiltonian cycle if and only if φ is satisfiable
- \boldsymbol{G}_{φ} should be constructible from φ by a polynomial time algorithm \mathcal{A}

3. Notation: φ has n variables $x_{1}, x_{2}, \ldots, x_{n}$ and m clauses $C_{1}, C_{2}, \ldots, C_{m}$.

Reduction construction

From 3SAT to Hamiltonian cycle in directed graph

1. To show reduction, we next describe an algorithm:

- Input: 3SAT formula φ
- Output: A graph \boldsymbol{G}_{φ}.
- Running time is polynomial.
- Requirement: φ is satisfiable $\Longleftrightarrow \boldsymbol{G}_{\varphi}$ is Hamiltonian.

2. Given 3SAT formula φ create a graph G_{φ} such that

- \boldsymbol{G}_{φ} has a Hamiltonian cycle if and only if φ is satisfiable
- \boldsymbol{G}_{φ} should be constructible from φ by a polynomial time algorithm \mathcal{A}

3. Notation: φ has \boldsymbol{n} variables $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{\boldsymbol{n}}$ and \boldsymbol{m} clauses $\boldsymbol{C}_{1}, \boldsymbol{C}_{2}, \ldots, \boldsymbol{C}_{\boldsymbol{m}}$.

Encoding assignments

Converting φ to a graph

Given a formula with n variables, we need a graph with 2^{n} different Hamiltonian paths, that can encode their assignments.

5

Encoding assignments

Converting $\boldsymbol{\varphi}$ to a graph

Given a formula with n variables, we need a graph with 2^{n} different Hamiltonian paths, that can encode their assignments.

5

$$
x_{1}=0, x_{2}=0, x_{3}=0, x_{4}=0
$$

Encoding assignments

Converting $\boldsymbol{\varphi}$ to a graph

Given a formula with n variables, we need a graph with 2^{n} different Hamiltonian paths, that can encode their assignments.

5

$$
x_{1}=1, x_{2}=0, x_{3}=0, x_{4}=0
$$

Encoding assignments

Converting $\boldsymbol{\varphi}$ to a graph

Given a formula with n variables, we need a graph with 2^{n} different Hamiltonian paths, that can encode their assignments.

5

$$
x_{1}=0, x_{2}=1, x_{3}=0, x_{4}=0
$$

Encoding assignments

Converting $\boldsymbol{\varphi}$ to a graph

Given a formula with n variables, we need a graph with 2^{n} different Hamiltonian paths, that can encode their assignments.

5

$$
x_{1}=1, x_{2}=1, x_{3}=0, x_{4}=0
$$

Encoding assignments

Converting $\boldsymbol{\varphi}$ to a graph

Given a formula with n variables, we need a graph with 2^{n} different Hamiltonian paths, that can encode their assignments.

5

$$
x_{1}=0, x_{2}=0, x_{3}=1, x_{4}=0
$$

Encoding assignments

Converting $\boldsymbol{\varphi}$ to a graph

Given a formula with n variables, we need a graph with 2^{n} different Hamiltonian paths, that can encode their assignments.

5

$$
x_{1}=1, x_{2}=0, x_{3}=1, x_{4}=0
$$

Encoding assignments

Converting $\boldsymbol{\varphi}$ to a graph

Given a formula with n variables, we need a graph with 2^{n} different Hamiltonian paths, that can encode their assignments.

5

$$
x_{1}=0, x_{2}=1, x_{3}=1, x_{4}=0
$$

Encoding assignments

Converting $\boldsymbol{\varphi}$ to a graph

Given a formula with n variables, we need a graph with 2^{n} different Hamiltonian paths, that can encode their assignments.

5

$$
x_{1}=1, x_{2}=1, x_{3}=1, x_{4}=01
$$

Encoding assignments

Converting φ to a graph

Given a formula with n variables, we need a graph with 2^{n} different Hamiltonian paths, that can encode their assignments.

5

$$
x_{1}=0, x_{2}=0, x_{3}=0, x_{4}=1
$$

Encoding assignments

Converting φ to a graph

Given a formula with n variables, we need a graph with 2^{n} different Hamiltonian paths, that can encode their assignments.

5

$$
x_{1}=1, x_{2}=0, x_{3}=0, x_{4}=1
$$

Encoding assignments

Converting φ to a graph

Given a formula with n variables, we need a graph with 2^{n} different Hamiltonian paths, that can encode their assignments.

5

$$
x_{1}=0, x_{2}=1, x_{3}=0, x_{4}=1
$$

Encoding assignments

Converting φ to a graph

Given a formula with n variables, we need a graph with 2^{n} different Hamiltonian paths, that can encode their assignments.

5

$$
x_{1}=1, x_{2}=1, x_{3}=0, x_{4}=1
$$

Encoding assignments

Converting φ to a graph

Given a formula with n variables, we need a graph with 2^{n} different Hamiltonian paths, that can encode their assignments.

5

$$
x_{1}=0, x_{2}=0, x_{3}=1, x_{4}=1
$$

Encoding assignments

Converting φ to a graph

Given a formula with n variables, we need a graph with 2^{n} different Hamiltonian paths, that can encode their assignments.

5

$$
x_{1}=1, x_{2}=0, x_{3}=1, x_{4}=1
$$

Encoding assignments

Converting $\boldsymbol{\varphi}$ to a graph

Given a formula with n variables, we need a graph with 2^{n} different Hamiltonian paths, that can encode their assignments.

5

$$
x_{1}=0, x_{2}=1, x_{3}=1, x_{4}=1
$$

Encoding assignments

Converting φ to a graph

Given a formula with n variables, we need a graph with 2^{n} different Hamiltonian paths, that can encode their assignments.

5

$$
x_{1}=1, x_{2}=1, x_{3}=1, x_{4}=1
$$

Encoding assignments

Converting φ to a graph

Given a formula with n variables, we need a graph with 2^{n} different Hamiltonian paths, that can encode their assignments.

5

THE END

(for now)

