Algorithms \& Models of Computation

CS/ECE 374, Fall 2020

22.2.5
 Intractability

\mathbf{P} versus NP

Proposition 22.6. P \subseteq NP.

For a problem in P no need for a certificate!
Proof
Consider problem $X \in P$ with algorithm A. Need to demonstrate that X has an efficient certifier
(1) Certifier \boldsymbol{C} on input $\boldsymbol{s}, \boldsymbol{t}$, runs $\boldsymbol{A}(\boldsymbol{s})$ and returns the answer
(2) C runs in polynomial time.
(3) If $s \in X$, then for every $t, C(s, t)=$ 'yes'
(9) If $\boldsymbol{s} \notin \boldsymbol{X}$, then for every $\boldsymbol{t}, \boldsymbol{C}(\boldsymbol{s}, \boldsymbol{t})=$ "no"

\mathbf{P} versus NP

Proposition 22.6.

P \subseteq NP.

For a problem in \mathbf{P} no need for a certificate!

Proof.

Consider problem $\boldsymbol{X} \in \mathbf{P}$ with algorithm \boldsymbol{A}. Need to demonstrate that \boldsymbol{X} has an efficient certifier:
(1) Certifier \boldsymbol{C} on input $\boldsymbol{s}, \boldsymbol{t}$, runs $\boldsymbol{A}(\boldsymbol{s})$ and returns the answer.
(2) C runs in polynomial time.
(3) If $\boldsymbol{s} \in \boldsymbol{X}$, then for every $\boldsymbol{t}, \boldsymbol{C}(\boldsymbol{s}, \boldsymbol{t})=$ "yes".

- If $\boldsymbol{s} \notin \boldsymbol{X}$, then for every $\boldsymbol{t}, \boldsymbol{C}(\boldsymbol{s}, \boldsymbol{t})=$ "no".

Exponential Time

Definition 22.7.

Exponential Time (denoted EXP) is the collection of all problems that have an algorithm which on input \boldsymbol{s} runs in exponential time, i.e., $\boldsymbol{O}\left(\mathbf{2}^{\text {poly }(|s|)}\right)$.

Exponential Time

Definition 22.7.

Exponential Time (denoted EXP) is the collection of all problems that have an algorithm which on input \boldsymbol{s} runs in exponential time, i.e., $\boldsymbol{O}\left(2^{\text {poly }(|s|)}\right)$.

Example: $\boldsymbol{O}\left(\mathbf{2}^{\boldsymbol{n}}\right), O\left(\mathbf{2}^{\boldsymbol{n} \log \boldsymbol{n}}\right), O\left(\mathbf{2}^{\boldsymbol{n}^{\mathbf{3}}}\right), \ldots$

NP versus EXP

Proposition 22.8. $N P \subseteq E X P$.

Proof.

Let $\boldsymbol{X} \in \mathbf{N P}$ with certifier \boldsymbol{C}. Need to design an exponential time algorithm for \boldsymbol{X}.
(1) For every \boldsymbol{t}, with $|\boldsymbol{t}| \leq \boldsymbol{p}(|\boldsymbol{s}|)$ run $\boldsymbol{C}(\boldsymbol{s}, \boldsymbol{t})$; answer "yes" if any one of these calls returns "yes".
(2) The above algorithm correctly solves \boldsymbol{X} (exercise).
(Algorithm runs in $\boldsymbol{O}\left(\boldsymbol{q}(|\boldsymbol{s}|+|\boldsymbol{p}(\boldsymbol{s})|)^{\boldsymbol{p}(|s|)}\right)$, where \boldsymbol{q} is the running time of \boldsymbol{C}.

Examples

(1) SAT: try all possible truth assignment to variables.
(2) Independent Set: try all possible subsets of vertices.
(3) Vertex Cover: try all possible subsets of vertices.

Is NP efficiently solvable?

We know $\mathbf{P} \subseteq \mathbf{N P} \subseteq$ EXP.

Is NP efficiently solvable?

We know $\mathbf{P} \subseteq \mathbf{N P} \subseteq$ EXP.

Big Question
Is there are problem in NP that does not belong to \mathbf{P} ? Is $\mathbf{P}=\mathbf{N P}$?

If $\mathbf{P}=\mathbf{N P} \ldots$

Or: If pigs could fly then life would be sweet.
(1) Many important optimization problems can be solved efficiently.
(2) The RSA cryptosystem can be broken.
(3) No security on the web.
(a) No e-commerce ...
© Creativity can be automated! Proofs for mathematical statement can be found by computers automatically (if short ones exist).

If $\mathbf{P}=\mathbf{N P} \ldots$
Or: If pigs could fly then life would be sweet.
(1) Many important optimization problems can be solved efficiently.
(2) The RSA cryptosystem can be broken.
(3) No security on the web.
((No e-commerce . . .
© Creativity can be automated! Proofs for mathematical statement can be found by computers automatically (if short ones exist).

If $\mathbf{P}=\mathbf{N P} \ldots$
Or: If pigs could fly then life would be sweet.
(1) Many important optimization problems can be solved efficiently.
(2) The RSA cryptosystem can be broken.
(3) No security on the web.
(-) No e-commerce
(3) Creativity can be automated! Proofs for mathematical statement can be found by computers automatically (if short ones exist).

If $\mathbf{P}=\mathbf{N P} \ldots$
Or: If pigs could fly then life would be sweet.
(1) Many important optimization problems can be solved efficiently.
(2) The RSA cryptosystem can be broken.
(3) No security on the web.
(9) No e-commerce . . .
(5) Creativity can be automated! Proofs for mathematical statement can be found by computers automatically (if short ones exist).

If $\mathbf{P}=\mathbf{N P} \ldots$
Or: If pigs could fly then life would be sweet.
(1) Many important optimization problems can be solved efficiently.
(2) The RSA cryptosystem can be broken.
(3) No security on the web.
(9) No e-commerce ...
(5) Creativity can be automated! Proofs for mathematical statement can be found by computers automatically (if short ones exist).

\mathbf{P} versus $\mathbf{N P}$

Status
 Relationship between \mathbf{P} and NP remains one of the most important open problems in mathematics/computer science.
 Consensus: Most people feel/believe $\boldsymbol{P} \neq \boldsymbol{N P}$.
 Resolving \mathbf{P} versus NP is a Clay Millennium Prize Problem. You can win a million dollars in addition to a Turing award and major fame!

Review question: If $\mathbf{P}=\mathbf{N P}$ this implies that...

(A) Vertex Cover can be solved in polynomial time.
(B) $\mathbf{P}=\mathbf{E X P}$.
(C) EXP $\subseteq \mathbf{P}$.
(D) All of the above.

THE END

(for now)

