Algorithms \& Models of Computation

CS/ECE 374, Fall 2020

22.2.3

Examples to problems with efficient certifiers

Example: Vertex Cover

(1) Problem: Does \boldsymbol{G} have a vertex cover of size $\leq \boldsymbol{k}$?

- Certificate: $\boldsymbol{S} \subseteq \boldsymbol{V}$.
(0) Certifier: Check $|\boldsymbol{S}| \leq \boldsymbol{k}$ and that for every edge at least one endpoint is in \boldsymbol{S}.

Example: SAT

(1) Problem: Does formula φ have a satisfying truth assignment?
(1) Certificate: Assignment a of $\mathbf{0 / 1}$ values to each variable.
(2) Certifier: Check each clause under \boldsymbol{a} and say "yes" if all clauses are true.

Example: Composites

Problem: Composite

Instance: A number s.
Question: Is the number \boldsymbol{s} a composite?
(1) Problem: Composite.
(1) Certificate: A factor $\boldsymbol{t} \leq \boldsymbol{s}$ such that $\boldsymbol{t} \neq 1$ and $\boldsymbol{t} \neq \boldsymbol{s}$.
(2) Certifier: Check that \boldsymbol{t} divides \boldsymbol{s}.

Example: NFA Universality

Problem: NFA Universality

Instance: Description of a NFA M.
Question: Is $\boldsymbol{L}(\boldsymbol{M})=\Sigma^{*}$, that is, does \boldsymbol{M} accept all strings?
(1) Problem: NFA Universality.
(1) Certificate: A DFA M^{\prime} equivalent to \boldsymbol{M}
(2) Certifier: Check that $\boldsymbol{L}\left(\boldsymbol{M}^{\prime}\right)=\Sigma^{*}$

Certifier is efficient but certificate is not necessarily short! We do not know if the problem is in NP

Example: NFA Universality

Problem: NFA Universality

Instance: Description of a NFA M.
Question: Is $\boldsymbol{L}(\boldsymbol{M})=\Sigma^{*}$, that is, does \boldsymbol{M} accept all strings?
(1) Problem: NFA Universality.
(1) Certificate: A DFA M^{\prime} equivalent to \boldsymbol{M}
(2) Certifier: Check that $\boldsymbol{L}\left(\boldsymbol{M}^{\prime}\right)=\Sigma^{*}$

Certifier is efficient but certificate is not necessarily short! We do not know if the problem is in $\boldsymbol{N P}$.

Example: A String Problem

Problem: PCP

Instance: Two sets of binary strings $\alpha_{1}, \ldots, \alpha_{n}$ and $\beta_{1}, \ldots, \boldsymbol{\beta}_{\boldsymbol{n}}$
Question: Are there indices $i_{1}, i_{2}, \ldots, i_{k}$ such that $\alpha_{i_{1}} \alpha_{i_{2}} \ldots \alpha_{i_{k}}=$ $\boldsymbol{\beta}_{i_{1}} \boldsymbol{\beta}_{i_{2}} \ldots \boldsymbol{\beta}_{i_{k}}$
(1) Problem: PCP
(1) Certificate: A sequence of indices $i_{1}, i_{2}, \ldots, i_{k}$
(2) Certifier: Check that $\alpha_{i_{1}} \alpha_{i_{2}} \ldots \boldsymbol{\alpha}_{i_{k}}=\boldsymbol{\beta}_{i_{1}} \boldsymbol{\beta}_{i_{2}} \ldots \boldsymbol{\beta}_{i_{k}}$

Example: A String Problem

Problem: PCP

Instance: Two sets of binary strings $\alpha_{1}, \ldots, \alpha_{n}$ and $\beta_{1}, \ldots, \beta_{n}$
Question: Are there indices $i_{1}, i_{2}, \ldots, i_{k}$ such that $\alpha_{i_{1}} \alpha_{i_{2}} \ldots \alpha_{i_{k}}=$ $\boldsymbol{\beta}_{i_{1}} \boldsymbol{\beta}_{i_{2}} \ldots \boldsymbol{\beta}_{i_{k}}$
(1) Problem: PCP
(1) Certificate: A sequence of indices $i_{1}, i_{2}, \ldots, i_{k}$
(2) Certifier: Check that $\alpha_{i_{1}} \alpha_{i_{2}} \ldots \alpha_{i_{k}}=\boldsymbol{\beta}_{i_{1}} \boldsymbol{\beta}_{i_{2}} \ldots \boldsymbol{\beta}_{i_{k}}$

PCP $=$ Posts Correspondence Problem and it is undecidable! Implies no finite bound on length of certificate!

THE END

(for now)

