Algorithms \& Models of Computation

CS/ECE 374, Fall 2020

21.6.3 2SAT

What about 2SAT?

2SAT can be solved in polynomial time! (specifically, linear time!)
No known polynomial time reduction from SAT (or 3SAT) to 2SAT. If there was, then SAT and 3SAT would be solvable in polynomial time.

Why the reduction from to fails?

Consider a clause ($\boldsymbol{x} \vee \boldsymbol{y} \vee \boldsymbol{z}$). We need to reduce it to a collection of 2CNF clauses. Introduce a face variable $\boldsymbol{\alpha}$, and rewrite this as

$$
\begin{array}{lll}
& (x \vee y \vee \alpha) \wedge(\neg \alpha \vee z) & \text { (bad! clause with } 3 \text { vars) } \\
\text { or } & (x \vee \alpha) \wedge(\neg \alpha \vee y \vee z) & \text { (bad! clause with } 3 \text { vars). }
\end{array}
$$

(In animal farm language: 2SAT good, 3SAT bad.)

What about 2SAT?

A challenging exercise: Given a 2SAT formula show to compute its satisfying assignment...
(Hint: Create a graph with two vertices for each variable (for a variable \boldsymbol{x} there would be two vertices with labels $\boldsymbol{x}=\mathbf{0}$ and $\boldsymbol{x}=\mathbf{1}$). For ever 2 CNF clause add two directed edges in the graph. The edges are implication edges: They state that if you decide to assign a certain value to a variable, then you must assign a certain value to some other variable.
Now compute the strong connected components in this graph, and continue from there...)

