Algorithms \& Models of Computation

CS/ECE 374, Fall 2020

Polynomial Time Reductions

Lecture 21
Tuesday, November 17, 2020

Algorithms \& Models of Computation

CS/ECE 374, Fall 2020

21.1

A quick review: Polynomials

What is a polynomial

A polynomial is a function of the form:

$$
f(x)=\sum_{i=0}^{t} a_{i} x^{i}
$$

For our purposes, we can assume that $\boldsymbol{a}_{\boldsymbol{i}} \geq \mathbf{0}$, for all \boldsymbol{i}. A term $a_{k} \boldsymbol{x}^{t}$ is a monomial.
The degree of $f(x)$ is t.
We have $f(n)=O\left(n^{t}\right)$.

What is a polynomial

A polynomial is a function of the form:

$$
f(x)=\sum_{i=0}^{t} a_{i} x^{i}
$$

For our purposes, we can assume that $\boldsymbol{a}_{\boldsymbol{i}} \geq \mathbf{0}$, for all \boldsymbol{i}. A term $a_{k} x^{t}$ is a monomial. The degree of $\boldsymbol{f}(\boldsymbol{x})$ is \boldsymbol{t}.

What is a polynomial

A polynomial is a function of the form:

$$
f(x)=\sum_{i=0}^{t} a_{i} x^{i}
$$

For our purposes, we can assume that $\boldsymbol{a}_{\boldsymbol{i}} \geq \mathbf{0}$, for all \boldsymbol{i}. A term $a_{k} x^{t}$ is a monomial. The degree of $\boldsymbol{f}(\boldsymbol{x})$ is \boldsymbol{t}.
We have $\boldsymbol{f}(\boldsymbol{n})=\boldsymbol{O}\left(\boldsymbol{n}^{\boldsymbol{t}}\right)$.

The degree of he polynomial matter...

Polynomial time good, exponential time bad

Combining polynomials

Lemma 21.1.

If $\boldsymbol{f}(\boldsymbol{x})=\sum_{i=0}^{\boldsymbol{d}} \boldsymbol{\alpha}_{\boldsymbol{i}} \boldsymbol{x}^{\boldsymbol{i}}$ is a polynomial of degree \boldsymbol{d}, and $\boldsymbol{g}(\boldsymbol{y})=\sum_{\boldsymbol{i}=\mathbf{0}}^{\boldsymbol{d}^{\prime}} \boldsymbol{\beta}_{\boldsymbol{i}} \boldsymbol{y}^{\boldsymbol{i}}$ is a polynomial of degree \boldsymbol{d}^{\prime}, then $\boldsymbol{g}(\boldsymbol{f}(\boldsymbol{x}))$ is a polynomial of degree $\boldsymbol{d}^{\prime} \boldsymbol{d}$.

Proof.

Observe that $(f(x))^{2}=\sum_{i=0}^{d} \sum_{j=0}^{d} \alpha_{i} \alpha_{j} x^{i+j}$ is a polynomial of degree $2 \boldsymbol{d}$, Arguing similarly, we have that $(\boldsymbol{f}(\boldsymbol{x}))^{i}$ is a polynomial of degree $\boldsymbol{i} \cdot \boldsymbol{d}$. Thus

$$
g(f(x))=\sum_{i=0}^{d^{\prime}} \beta_{i}(f(x))^{i}
$$

is a sum of polynomials of degree $\mathbf{0}, \boldsymbol{d}, \mathbf{2 d}, \ldots, \boldsymbol{d} \cdot \boldsymbol{d}^{\prime}$, which is a polynomial of degree $\boldsymbol{d} \cdot \boldsymbol{d}^{\prime}$ by collecting monomials of the same degree into a single monomial.

THE END

(for now)

