Algorithms \& Models of Computation

CS/ECE 374, Fall 2020

19.6.3

Proving optimality of earliest finish time

Earliest finish time: A quick recall

Time

Earliest finish time: A quick recall

Earliest finish time: A quick recall

Time

Earliest finish time: A quick recall

Earliest finish time: A quick recall

Earliest finish time: A quick recall

Earliest finish time: A quick recall

Earliest finish time: A quick recall

Time

Earliest finish time: A quick recall

Earliest finish time: A quick recall

Earliest finish time: A quick recall

Earliest finish time: A quick recall

Proving Optimality

(1) Correctness: Clearly the algorithm returns a set of jobs that does not have any conflicts
(2) For a set of requests R, let O be an optimal set and let X be the set returned by the greedy algorithm. Then $O=X$?

Proving Optimality

(1) Correctness: Clearly the algorithm returns a set of jobs that does not have any conflicts
(2) For a set of requests R, let O be an optimal set and let X be the set returned by the greedy algorithm. Then $\boldsymbol{O}=\boldsymbol{X}$?

Instead we will show that $|O|=|X|$

Proving Optimality

(1) Correctness: Clearly the algorithm returns a set of jobs that does not have any conflicts
(2) For a set of requests \boldsymbol{R}, let \boldsymbol{O} be an optimal set and let \boldsymbol{X} be the set returned by the greedy algorithm. Then $O=X$? Not likely!

Instead we will show that $|O|=|X|$

Proving Optimality

(1) Correctness: Clearly the algorithm returns a set of jobs that does not have any conflicts
(2) For a set of requests \boldsymbol{R}, let \boldsymbol{O} be an optimal set and let \boldsymbol{X} be the set returned by the greedy algorithm. Then $O=X$? Not likely!

Instead we will show that $|O|=|X|$

Proving Optimality

(1) Correctness: Clearly the algorithm returns a set of jobs that does not have any conflicts
(2) For a set of requests \boldsymbol{R}, let \boldsymbol{O} be an optimal set and let \boldsymbol{X} be the set returned by the greedy algorithm. Then $O=X$? Not likely!

Instead we will show that $|O|=|X|$

Proving Optimality

(1) Correctness: Clearly the algorithm returns a set of jobs that does not have any conflicts
(2) For a set of requests \boldsymbol{R}, let \boldsymbol{O} be an optimal set and let \boldsymbol{X} be the set returned by the greedy algorithm. Then $O=X$? Not likely!

Instead we will show that $|O|=|X|$

Helper Claim

Claim 19.3.

i be first interval picked by Greedy into solution.
O: Optimal solution.
If $i \notin O$, there is exactly one interval $j_{1} \in O$ that conflicts with i.

Proof.

(1) No $j \in O$ conflicts $i \Longrightarrow O$ is not opt!
(2) Suppose $j_{1}, j_{2} \in O$ such that $j_{1} \neq j_{2}$ and both j_{1} and j_{2} conflict with i.

- Since \boldsymbol{i} has earliest finish time, \boldsymbol{j}_{1} and \boldsymbol{i} overlap at $\boldsymbol{f}(\boldsymbol{i})$.
(0) For same reason \boldsymbol{j}_{2} also overlaps with \boldsymbol{i} at $f(i)$.
- Implies that $\boldsymbol{j}_{1}, \boldsymbol{j}_{2}$ overlap at $\boldsymbol{f}(\boldsymbol{i})$ but intervals in O cannot overlap.

Proof of Optimality: Key Lemma

Lemma 19.4.
\boldsymbol{i}_{1} be first interval picked by Greedy. There exists an optimum solution that contains \boldsymbol{i}_{1}.
Proof.
Let O be an arbitrary optimum solution. If $i_{1} \in O$ we are done.
(1) Exists exactly one $j_{1} \in O$ conflicting with i_{1}
(2) Form a new set O^{\prime} by removing \boldsymbol{i}_{1} from O and adding i_{1}, that is
(3) From claim, O^{\prime} is a feasible solution (no conflicts)
(Since $\left|O^{\prime}\right|=|O|, O^{\prime}$ is also an optimum solution and it contains i_{1}.

Proof of Optimality: Key Lemma

Lemma 19.4.
i_{1} be first interval picked by Greedy. There exists an optimum solution that contains \boldsymbol{i}_{1}.
Proof.
Let O be an arbitrary optimum solution. If $i_{1} \in O$ we are done. By Claim 19.3 ...
(1) Exists exactly one $\boldsymbol{j}_{1} \in O$ conflicting with \boldsymbol{i}_{1}.
(3) Form a new set O^{\prime} by removing j_{1} from O and adding i_{1}, that is

- From claim, O^{\prime} is a feasible solution (no conflicts)
- Since $\left|O^{\prime}\right|=|O|, O^{\prime}$ is also an optimum solution anc it contains i_{1}

Proof of Optimality: Key Lemma

Lemma 19.4.

\boldsymbol{i}_{1} be first interval picked by Greedy. There exists an optimum solution that contains \boldsymbol{i}_{1}.

Proof.

Let O be an arbitrary optimum solution. If $i_{1} \in O$ we are done. By Claim 19.3 ...
(1) Exists exactly one $j_{1} \in O$ conflicting with i_{1}.
(2) Form a new set O^{\prime} by removing j_{1} from O and adding i_{1}, that is $O^{\prime}=\left(O-\left\{j_{1}\right\}\right) \cup\left\{i_{1}\right\}$.
(3) From claim, O^{\prime} is a feasible solution (no conflicts).
(9) Since $\left|O^{\prime}\right|=|O|, O^{\prime}$ is also an optimum solution and it contains i_{1}.

Proof of Optimality of Earliest Finish Time First

Proof by Induction on number of intervals.
Base Case: $\boldsymbol{n}=1$. Trivial since Greedy picks one interval.

```
Induction Step: Assume theorem holds for i < n
Let }
i}\mp@subsup{i}{1}{}\Leftarrow\mathrm{ First interval picked by greedy algorithm
K'}\Leftarrow\mathrm{ The result of removing i}\mp@subsup{i}{1}{}\mathrm{ and all conflicting intervals from K.
|'}\mp@subsup{K}{}{\prime}=|K|-1
G(K),G(\mp@subsup{K}{}{\prime}): Solution produced by Greedy on }K\mathrm{ and }\mp@subsup{K}{}{\prime}\mathrm{ ', respectively.
Lemma 19.4\Longrightarrow optimum solution O to K with i}\mp@subsup{i}{1}{}\inO\mathrm{ .
Let O
```


Proof of Optimality of Earliest Finish Time First

Proof by Induction on number of intervals.
Base Case: $\boldsymbol{n}=1$. Trivial since Greedy picks one interval. Induction Step: Assume theorem holds for $\boldsymbol{i}<\boldsymbol{n}$. Let K be an input (i.e., instance) with n intervals

Proof of Optimality of Earliest Finish Time First

Proof by Induction on number of intervals.
Base Case: $\boldsymbol{n}=1$. Trivial since Greedy picks one interval. Induction Step: Assume theorem holds for $\boldsymbol{i}<\boldsymbol{n}$.
Let K be an input (i.e., instance) with n intervals $i_{1} \Leftarrow$ First interval picked by greedy algorithm.

Proof of Optimality of Earliest Finish Time First

Proof by Induction on number of intervals.
Base Case: $\boldsymbol{n}=1$. Trivial since Greedy picks one interval. Induction Step: Assume theorem holds for $\boldsymbol{i}<\boldsymbol{n}$.
Let K be an input (i.e., instance) with n intervals
$i_{1} \Leftarrow$ First interval picked by greedy algorithm.
$K^{\prime} \Leftarrow$ The result of removing i_{1} and all conflicting intervals from K.

Proof of Optimality of Earliest Finish Time First

Proof by Induction on number of intervals.
Base Case: $\boldsymbol{n}=1$. Trivial since Greedy picks one interval. Induction Step: Assume theorem holds for $\boldsymbol{i}<\boldsymbol{n}$.
Let K be an input (i.e., instance) with \boldsymbol{n} intervals
$i_{1} \Leftarrow$ First interval picked by greedy algorithm.
$K^{\prime} \Leftarrow$ The result of removing i_{1} and all conflicting intervals from K.
$\left|K^{\prime}\right|=|K|-1$.
Solution produced by Greedy on K and K^{\prime}, respectively.

from Greedy description

Proof of Optimality of Earliest Finish Time First

Proof by Induction on number of intervals.

Base Case: $\boldsymbol{n}=1$. Trivial since Greedy picks one interval. Induction Step: Assume theorem holds for $\boldsymbol{i}<\boldsymbol{n}$.
Let K be an input (i.e., instance) with \boldsymbol{n} intervals
$i_{1} \Leftarrow$ First interval picked by greedy algorithm.
$K^{\prime} \Leftarrow$ The result of removing i_{1} and all conflicting intervals from K.
$\left|K^{\prime}\right|=|K|-1$.
$G(K), G\left(K^{\prime}\right)$: Solution produced by Greedy on K and K^{\prime}, respectively.

Proof of Optimality of Earliest Finish Time First

Proof by Induction on number of intervals.

Base Case: $\boldsymbol{n}=1$. Trivial since Greedy picks one interval. Induction Step: Assume theorem holds for $\boldsymbol{i}<\boldsymbol{n}$.
Let K be an input (i.e., instance) with \boldsymbol{n} intervals
$i_{1} \Leftarrow$ First interval picked by greedy algorithm.
$K^{\prime} \Leftarrow$ The result of removing i_{1} and all conflicting intervals from K.
$\left|K^{\prime}\right|=|K|-1$.
$G(K), G\left(K^{\prime}\right)$: Solution produced by Greedy on K and K^{\prime}, respectively.
Lemma $19.4 \Longrightarrow$ optimum solution O to K with $i_{1} \in O$.

Proof of Optimality of Earliest Finish Time First

Proof by Induction on number of intervals.

Base Case: $\boldsymbol{n}=1$. Trivial since Greedy picks one interval. Induction Step: Assume theorem holds for $\boldsymbol{i}<\boldsymbol{n}$.
Let K be an input (i.e., instance) with n intervals
$i_{1} \Leftarrow$ First interval picked by greedy algorithm.
$K^{\prime} \Leftarrow$ The result of removing i_{1} and all conflicting intervals from K.
$\left|K^{\prime}\right|=|K|-1$.
$G(K), G\left(K^{\prime}\right)$: Solution produced by Greedy on K and K^{\prime}, respectively.
Lemma $19.4 \Longrightarrow$ optimum solution O to K with $i_{1} \in O$.
Let $O^{\prime}=O-\left\{i_{1}\right\} . O^{\prime}$ is a solution to K^{\prime}.

$$
|G(K)|=1+\left|G\left(K^{\prime}\right)\right| \quad \text { from Greedy description }
$$

Proof of Optimality of Earliest Finish Time First

Proof by Induction on number of intervals.

Base Case: $\boldsymbol{n}=1$. Trivial since Greedy picks one interval.
Induction Step: Assume theorem holds for $\boldsymbol{i}<\boldsymbol{n}$.
Let K be an input (i.e., instance) with n intervals
$i_{1} \Leftarrow$ First interval picked by greedy algorithm.
$K^{\prime} \Leftarrow$ The result of removing i_{1} and all conflicting intervals from K.
$\left|K^{\prime}\right|=|K|-1$.
$G(K), G\left(K^{\prime}\right)$: Solution produced by Greedy on K and K^{\prime}, respectively.
Lemma $19.4 \Longrightarrow$ optimum solution O to K with $i_{1} \in O$.
Let $O^{\prime}=O-\left\{i_{1}\right\} . O^{\prime}$ is a solution to K^{\prime}.

$$
\begin{array}{rlr}
|G(K)| & =1+\left|G\left(K^{\prime}\right)\right| \quad \text { from Greedy description } \\
& \left.\geq 1+\left|O^{\prime}\right| \quad \text { By induction, } G\left(I^{\prime}\right) \text { is optimum for } I^{\prime}\right)
\end{array}
$$

Proof of Optimality of Earliest Finish Time First

Proof by Induction on number of intervals.

Base Case: $\boldsymbol{n}=1$. Trivial since Greedy picks one interval. Induction Step: Assume theorem holds for $\boldsymbol{i}<\boldsymbol{n}$.
Let K be an input (i.e., instance) with n intervals
$i_{1} \Leftarrow$ First interval picked by greedy algorithm.
$K^{\prime} \Leftarrow$ The result of removing i_{1} and all conflicting intervals from K.
$\left|K^{\prime}\right|=|K|-1$.
$G(K), G\left(K^{\prime}\right)$: Solution produced by Greedy on K and K^{\prime}, respectively.
Lemma $19.4 \Longrightarrow$ optimum solution O to K with $i_{1} \in O$.
Let $O^{\prime}=O-\left\{i_{1}\right\} . O^{\prime}$ is a solution to K^{\prime}.

$$
\begin{array}{rlr}
|G(K)| & =1+\left|G\left(K^{\prime}\right)\right| \quad \text { from Greedy description } \\
& \left.\geq 1+\left|O^{\prime}\right| \quad \text { By induction, } G\left(I^{\prime}\right) \text { is optimum for } I^{\prime}\right) \\
& =|O|
\end{array}
$$

THE END

(for now)

