Algorithms \& Models of Computation

CS/ECE 374, Fall 2020

18.5

Summary of shortest path algorithms

Summary of results on shortest paths

Single source		
No negative edges	Dijkstra	$\boldsymbol{O}(\boldsymbol{n} \log \boldsymbol{n}+\boldsymbol{m})$
Edge lengths can be negative	Bellman Ford	$\boldsymbol{O}(\boldsymbol{n m})$

All Pairs Shortest Paths

No negative edges	\boldsymbol{n}^{*} Dijkstra	$\boldsymbol{O}\left(\boldsymbol{n}^{2} \log \boldsymbol{n}+\boldsymbol{n m}\right)$
No negative cycles	\boldsymbol{n}^{*} Bellman Ford	$\boldsymbol{O}\left(\boldsymbol{n}^{2} \boldsymbol{m}\right)=\boldsymbol{O}\left(\boldsymbol{n}^{4}\right)$
No negative cycles $\left(^{*}\right)$	BF $+\boldsymbol{n}^{*}$ Dijkstra	$\boldsymbol{O}\left(\boldsymbol{n m}+\boldsymbol{n}^{2} \log \boldsymbol{n}\right)$
No negative cycles	Floyd-Warshall	$\boldsymbol{O}\left(\boldsymbol{n}^{3}\right)$
Unweighted	Matrix multiplication	$\boldsymbol{O}\left(\boldsymbol{n}^{2.38}\right), \boldsymbol{O}\left(\boldsymbol{n}^{2.58}\right)$

Summary of results on shortest paths

More details

$\left(^{*}\right)$: The algorithm for the case that there are no negative cycles, and doing all shortest paths, works by computing a potential function using Bellman-Ford and then doing Dijkstra. It is mentioned for the sake of completeness, but it outside the scope of the class.

THE END

(for now)

