Algorithms \& Models of Computation

CS/ECE 374, Fall 2020

18.2

Bellman Ford Algorithm

Algorithms \& Models of Computation CS/ECE 374, Fall 2020
 18.2.1
 Shortest path with negative lengths: The challenge

Shortest Paths with Negative Lengths

Lemma 18.1.

Let \boldsymbol{G} be a directed graph with arbitrary edge lengths. If $\boldsymbol{s}=\boldsymbol{v}_{\mathbf{0}} \rightarrow \boldsymbol{v}_{\mathbf{1}} \rightarrow \mathbf{v}_{\mathbf{2}} \rightarrow \ldots \rightarrow \boldsymbol{v}_{\boldsymbol{k}}$ is a shortest path from \boldsymbol{s} to $\boldsymbol{v}_{\boldsymbol{k}}$ then for $\mathbf{1} \leq \boldsymbol{i}<\boldsymbol{k}$:
(1) $\boldsymbol{s}=\boldsymbol{v}_{\mathbf{0}} \rightarrow \boldsymbol{v}_{\mathbf{1}} \rightarrow \boldsymbol{v}_{\mathbf{2}} \rightarrow \ldots \rightarrow \boldsymbol{v}_{\boldsymbol{i}}$ is a shortest path from \boldsymbol{s} to $\boldsymbol{v}_{\boldsymbol{i}}$
(2) False: $\operatorname{dist}\left(s, v_{i}\right) \leq \operatorname{dist}\left(s, v_{k}\right)$ for $1 \leq i<k$. Holds true only for non-negative Cannot explore nodes in increasing order of distance! We need other strategies.

Shortest Paths with Negative Lengths

Lemma 18.1.

Let \boldsymbol{G} be a directed graph with arbitrary edge lengths. If $\boldsymbol{s}=\boldsymbol{v}_{\mathbf{0}} \rightarrow \boldsymbol{v}_{\mathbf{1}} \rightarrow \mathbf{v}_{\mathbf{2}} \rightarrow \ldots \rightarrow \boldsymbol{v}_{\boldsymbol{k}}$ is a shortest path from \boldsymbol{s} to $\boldsymbol{v}_{\boldsymbol{k}}$ then for $\mathbf{1} \leq \boldsymbol{i}<\boldsymbol{k}$:
(1) $\boldsymbol{s}=\boldsymbol{v}_{\mathbf{0}} \rightarrow \boldsymbol{v}_{\mathbf{1}} \rightarrow \boldsymbol{v}_{\mathbf{2}} \rightarrow \ldots \rightarrow \boldsymbol{v}_{\boldsymbol{i}}$ is a shortest path from \boldsymbol{s} to $\boldsymbol{v}_{\boldsymbol{i}}$
(2) False: $\boldsymbol{\operatorname { d i s }} \boldsymbol{t}\left(\boldsymbol{s}, \boldsymbol{v}_{\boldsymbol{i}}\right) \leq \boldsymbol{\operatorname { d i s }} \boldsymbol{t}\left(\boldsymbol{s}, \boldsymbol{v}_{\boldsymbol{k}}\right)$ for $\mathbf{1} \leq \boldsymbol{i}<\boldsymbol{k}$. Holds true only for non-negative edge lengths.

Cannot explore nodes in increasing order of distance! We need other strategies.

Shortest Paths with Negative Lengths

Lemma 18.1.

Let \boldsymbol{G} be a directed graph with arbitrary edge lengths. If $\boldsymbol{s}=\boldsymbol{v}_{\mathbf{0}} \rightarrow \boldsymbol{v}_{\mathbf{1}} \rightarrow \mathbf{v}_{\mathbf{2}} \rightarrow \ldots \rightarrow \boldsymbol{v}_{\boldsymbol{k}}$ is a shortest path from \boldsymbol{s} to $\boldsymbol{v}_{\boldsymbol{k}}$ then for $\mathbf{1} \leq \boldsymbol{i}<\boldsymbol{k}$:
(1) $\boldsymbol{s}=\boldsymbol{v}_{0} \rightarrow \boldsymbol{v}_{1} \rightarrow \boldsymbol{v}_{\mathbf{2}} \rightarrow \ldots \rightarrow \boldsymbol{v}_{\boldsymbol{i}}$ is a shortest path from \boldsymbol{s} to $\boldsymbol{v}_{\boldsymbol{i}}$
(2) False: $\boldsymbol{\operatorname { d i s t }}\left(\boldsymbol{s}, \boldsymbol{v}_{\boldsymbol{i}}\right) \leq \boldsymbol{\operatorname { d i s t }}\left(\boldsymbol{s}, \boldsymbol{v}_{\boldsymbol{k}}\right)$ for $\mathbf{1} \leq \boldsymbol{i}<\boldsymbol{k}$. Holds true only for non-negative edge lengths.

Cannot explore nodes in increasing order of distance! We need other strategies.

THE END

(for now)

