Algorithms \& Models of Computation
CS/ECE 374, Fall 2020
18.1.3

Restating problem of Shortest path with negative edges

Alternatively: Finding Shortest Walks

Given a graph $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{E})$:
(1) A path is a sequence of distinct vertices $\boldsymbol{v}_{\mathbf{1}}, \boldsymbol{v}_{\mathbf{2}}, \ldots, \boldsymbol{v}_{k}$ such that $\left(\boldsymbol{v}_{\boldsymbol{i}}, \boldsymbol{v}_{\boldsymbol{i}+\boldsymbol{1}}\right) \in \boldsymbol{E}$ for $\mathbf{1} \leq i \leq k-1$.
(2) A walk is a sequence of vertices $\boldsymbol{v}_{\mathbf{1}}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{k}$ such that $\left(\boldsymbol{v}_{\boldsymbol{i}}, \boldsymbol{v}_{\boldsymbol{i}+\boldsymbol{1}}\right) \in \boldsymbol{E}$ for $\mathbf{1} \leq \boldsymbol{i} \leq \boldsymbol{k}-\mathbf{1}$. Vertices are allowed to repeat.

Define $\boldsymbol{\operatorname { d i s t }}(\boldsymbol{u}, \boldsymbol{v})$ to be the length of a shortest walk from \boldsymbol{u} to \boldsymbol{v}.
(1) If there is a walk from \boldsymbol{u} to \boldsymbol{v} that contains negative length cycle then $\operatorname{dist}(u, v)=-\infty$
(2) Else there is a path with at most $\boldsymbol{n}-\mathbf{1}$ edges whose length is equal to the length of a shortest walk and $\operatorname{dist}(\boldsymbol{u}, \boldsymbol{v})$ is finite
Helpful to think about walks

Shortest Paths with Negative Edge Lengths

Problems

Algorithmic Problems

Input: A directed graph $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{E})$ with edge lengths (could be negative). For edge $\boldsymbol{e}=(\boldsymbol{u}, \boldsymbol{v}), \ell(\boldsymbol{e})=\ell(\boldsymbol{u}, \boldsymbol{v})$ is its length.

Questions:

(1) Given nodes $\boldsymbol{s}, \boldsymbol{t}$, either find a negative length cycle \boldsymbol{C} that \boldsymbol{s} can reach or find a shortest path from \boldsymbol{s} to \boldsymbol{t}.
(2) Given node \boldsymbol{s}, either find a negative length cycle \boldsymbol{C} that \boldsymbol{s} can reach or find shortest path distances from \boldsymbol{s} to all reachable nodes.
(3) Check if \boldsymbol{G} has a negative length cycle or not.

Shortest Paths with Negative Edge Lengths

In Undirected Graphs

Note: With negative lengths, shortest path problems and negative cycle detection in undirected graphs cannot be reduced to directed graphs by bi-directing each undirected edge. Why?

Problem can be solved efficiently in undirected graphs but algorithms are different and significantly more involved than those for directed graphs. One need to compute \boldsymbol{T}-joins in the relevant graph. Pretty painful stuff.

THE END

(for now)

