Algorithms \& Models of Computation
 CS/ECE 374, Fall 2020
 18.1.2
 But wait! Things get worse: Negative cycles

Negative Length Cycles

Definition 18.2.

A cycle \boldsymbol{C} is a negative length cycle if the sum of the edge lengths of \boldsymbol{C} is negative.

Negative Length Cycles

Definition 18.2.

A cycle \boldsymbol{C} is a negative length cycle if the sum of the edge lengths of \boldsymbol{C} is negative.

Negative Length Cycles

Definition 18.2.

A cycle \boldsymbol{C} is a negative length cycle if the sum of the edge lengths of \boldsymbol{C} is negative.

What is the shortest path distance between \boldsymbol{s} and \boldsymbol{t} ? Reminder: Paths have to be simple...

Shortest Paths and Negative Cycles

Given $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{E})$ with edge lengths and $\boldsymbol{s}, \boldsymbol{t}$. Suppose
(1) \boldsymbol{G} has a negative length cycle \boldsymbol{C}, and
(2) \boldsymbol{s} can reach \boldsymbol{C} and \boldsymbol{C} can reach \boldsymbol{t}.

Question: What is the shortest distance from s to t ?
Possible answers: Define shortest distance to be:
(1) undefined, that is $-\infty$, OR
© the length of a shortest simple path from s to t.

Shortest Paths and Negative Cycles

Given $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{E})$ with edge lengths and $\boldsymbol{s}, \boldsymbol{t}$. Suppose
(1) \boldsymbol{G} has a negative length cycle \boldsymbol{C}, and
(2) \boldsymbol{s} can reach \boldsymbol{C} and \boldsymbol{C} can reach \boldsymbol{t}.

Question: What is the shortest distance from \boldsymbol{s} to \boldsymbol{t} ?
Possible answers: Define shortest distance to be:
(1) undefined, that is $-\infty$, OR
(2) the length of a shortest simple path from \boldsymbol{s} to \boldsymbol{t}.

Really bad new about negative edges, and shortest path...

Lemma 18.3.

If there is an efficient algorithm to find a shortest simple $\boldsymbol{s} \rightarrow \boldsymbol{t}$ path in a graph with negative edge lengths, then there is an efficient algorithm to find the longest simple $\boldsymbol{s} \rightarrow \boldsymbol{t}$ path in a graph with positive edge lengths.

Finding the $\boldsymbol{s} \rightarrow \boldsymbol{t}$ longest path is difficult. NP-Hard!

THE END

(for now)

