Algorithms \& Models of Computation
CS/ECE 374, Fall 2020
17.3.4

On the hereditary nature of shortest paths

You can not shortcut a shortest path

Lemma

\boldsymbol{G} : directed graph with non-negative edge lengths. $\operatorname{dist}(\boldsymbol{s}, \boldsymbol{v})$: shortest path length from \boldsymbol{s} to \boldsymbol{v}.
If $\boldsymbol{s}=\boldsymbol{v}_{\mathbf{0}} \rightarrow \mathbf{v}_{\mathbf{1}} \rightarrow \mathbf{v}_{\mathbf{2}} \rightarrow \ldots \rightarrow \boldsymbol{v}_{\boldsymbol{k}}$ shortest path from \boldsymbol{s} to $\boldsymbol{v}_{\boldsymbol{k}}$ then for any $\mathbf{0} \leq \boldsymbol{i}<\boldsymbol{j} \leq \boldsymbol{k}$:
$\boldsymbol{v}_{\boldsymbol{i}} \rightarrow \boldsymbol{v}_{\boldsymbol{i}+\boldsymbol{1}} \rightarrow \ldots \rightarrow \boldsymbol{v}_{\boldsymbol{i}}$ is shortest path from $\boldsymbol{v}_{\boldsymbol{i}}$ to $\boldsymbol{v}_{\boldsymbol{j}}$

You can not shortcut a shortest path

Lemma

\boldsymbol{G} : directed graph with non-negative edge lengths.
$\operatorname{dist}(\boldsymbol{s}, \boldsymbol{v})$: shortest path length from \boldsymbol{s} to \boldsymbol{v}.
If $\boldsymbol{s}=\boldsymbol{v}_{\mathbf{0}} \rightarrow \boldsymbol{v}_{\mathbf{1}} \rightarrow \boldsymbol{v}_{\mathbf{2}} \rightarrow \ldots \rightarrow \boldsymbol{v}_{\boldsymbol{k}}$ shortest path from \boldsymbol{s} to $\boldsymbol{v}_{\boldsymbol{k}}$ then for any $\mathbf{0} \leq \boldsymbol{i}<\boldsymbol{j} \leq \boldsymbol{k}:$
$\boldsymbol{v}_{\boldsymbol{i}} \rightarrow \boldsymbol{v}_{\boldsymbol{i}+\boldsymbol{1}} \rightarrow \ldots \rightarrow \boldsymbol{v}_{\boldsymbol{i}}$ is shortest path from $\boldsymbol{v}_{\boldsymbol{i}}$ to $\boldsymbol{v}_{\boldsymbol{j}}$

Proof.

Suppose not. Then for some $\mathbf{0} \leq \boldsymbol{i}<\boldsymbol{j} \leq \boldsymbol{k}$ there is a path \boldsymbol{P}^{\prime} from $\boldsymbol{v}_{\boldsymbol{i}}$ to $\boldsymbol{v}_{\boldsymbol{j}}$ of length strictly less than that of $\boldsymbol{s}=\boldsymbol{v}_{\boldsymbol{i}} \rightarrow \boldsymbol{v}_{\boldsymbol{i}+\boldsymbol{1}} \rightarrow \ldots \rightarrow \boldsymbol{v}_{\boldsymbol{j}}$. Then the path

$$
s=v_{0} \rightarrow v_{1} \rightarrow \cdots \rightarrow v_{i} \bullet P^{\prime} \bullet v_{j} \rightarrow v_{j+1} \rightarrow \cdots \rightarrow v_{k}
$$

is a strictly shorter path from \boldsymbol{s} to $\boldsymbol{v}_{\boldsymbol{k}}$ than $\boldsymbol{s}=\boldsymbol{v}_{\mathbf{0}} \rightarrow \boldsymbol{v}_{\mathbf{1}} \ldots \rightarrow \boldsymbol{v}_{\boldsymbol{k}}$.

A proof by picture

A proof by picture

A proof by picture

A shorter path
from v_{0} to v_{10}. A contradiction.

What we really need...

Corollary

\boldsymbol{G} : directed graph with non-negative edge lengths. $\operatorname{dist}(\boldsymbol{s}, \boldsymbol{v})$: shortest path length from \boldsymbol{s} to \boldsymbol{v}.
If $\boldsymbol{s}=\boldsymbol{v}_{\mathbf{0}} \rightarrow \boldsymbol{v}_{\mathbf{1}} \rightarrow \mathbf{v}_{\mathbf{2}} \rightarrow \ldots \rightarrow \boldsymbol{v}_{\boldsymbol{k}}$ shortest path from \boldsymbol{s} to $\boldsymbol{v}_{\boldsymbol{k}}$ then for any $\mathbf{0} \leq \boldsymbol{i} \leq \boldsymbol{k}$:
(1) $\boldsymbol{s}=\boldsymbol{v}_{\mathbf{0}} \rightarrow \mathbf{v}_{\mathbf{1}} \rightarrow \mathbf{v}_{\mathbf{2}} \rightarrow \ldots \rightarrow \boldsymbol{v}_{\boldsymbol{i}}$ is shortest path from \boldsymbol{s} to $\boldsymbol{v}_{\boldsymbol{i}}$
(2) $\operatorname{dist}\left(\boldsymbol{s}, \boldsymbol{v}_{\boldsymbol{i}}\right) \leq \operatorname{dist}\left(\boldsymbol{s}, \boldsymbol{v}_{\boldsymbol{k}}\right)$. Relies on non-neg edge lengths.

THE END

(for now)

