Algorithms \& Models of Computation

CS/ECE 374, Fall 2020
17.3

Shortest Paths and Dijkstra's Algorithm

Algorithms \& Models of Computation
CS/ECE 374, Fall 2020
17.3.1

Problem definition

Shortest Path Problems

Shortest Path Problems

Input A (undirected or directed) graph $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{E})$ with edge lengths (or costs). For edge $\boldsymbol{e}=(\boldsymbol{u}, \boldsymbol{v}), \ell(\boldsymbol{e})=\ell(\boldsymbol{u}, \boldsymbol{v})$ is its length.
(1) Given nodes $\boldsymbol{s}, \boldsymbol{t}$ find shortest path from \boldsymbol{s} to \boldsymbol{t}.
(2) Given node \boldsymbol{s} find shortest path from \boldsymbol{s} to all other nodes.
(3) Find shortest paths for all pairs of nodes.

Many applications!

Shortest Path Problems

Shortest Path Problems

Input A (undirected or directed) graph $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{E})$ with edge lengths (or costs). For edge $\boldsymbol{e}=(\boldsymbol{u}, \boldsymbol{v}), \ell(\boldsymbol{e})=\ell(\boldsymbol{u}, \boldsymbol{v})$ is its length.
(1) Given nodes $\boldsymbol{s}, \boldsymbol{t}$ find shortest path from \boldsymbol{s} to \boldsymbol{t}.
(2) Given node \boldsymbol{s} find shortest path from \boldsymbol{s} to all other nodes.
(3) Find shortest paths for all pairs of nodes.

Many applications!

Single-Source Shortest Paths:

Non-Negative Edge Lengths

(1) Single-Source Shortest Path Problems
(1) Input: A (undirected or directed) graph $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{E})$ with non-negative edge lengths. For edge $\boldsymbol{e}=(\boldsymbol{u}, \boldsymbol{v}), \ell(\boldsymbol{e})=\ell(\boldsymbol{u}, \boldsymbol{v})$ is its length.
(2) Given nodes $\boldsymbol{s}, \boldsymbol{t}$ find shortest path from \boldsymbol{s} to \boldsymbol{t}.
(3) Given node \boldsymbol{s} find shortest path from \boldsymbol{s} to all other nodes.
(1) Restrict attention to directed graphs
(2) Undirected graph problem can be reduced to directed graph problem - how?
(1) Given undirected graph G, create a new directed graph G^{\prime} by replacing each edge $\{u, v\}$ in G by (u, v) and (v, u) in G^{\prime}.
(2) set $\ell(\boldsymbol{u}, \boldsymbol{v})=\boldsymbol{\ell}(\boldsymbol{v}, \boldsymbol{u})=\ell(\{\boldsymbol{u}, \boldsymbol{v}\})$
(3) Exercise: show reduction works. Relies on non-negativity!

Single-Source Shortest Paths:

Non-Negative Edge Lengths

(1) Single-Source Shortest Path Problems
(1) Input: A (undirected or directed) graph $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{E})$ with non-negative edge length. For edge $\boldsymbol{e}=(\boldsymbol{u}, \boldsymbol{v}), \ell(\boldsymbol{e})=\ell(\boldsymbol{u}, \boldsymbol{v})$ is its length.
(2) Given nodes $\boldsymbol{s}, \boldsymbol{t}$ find shortest path from \boldsymbol{s} to \boldsymbol{t}.
(3) Given node \boldsymbol{s} find shortest path from \boldsymbol{s} to all other nodes.
(2) (1) Restrict attention to directed graphs
(2) Undirected graph problem can be reduced to directed graph problem - how?
(1) Given undirected graph G, create a new directed graph G^{\prime} by replacing each edge $\{\boldsymbol{u}, \boldsymbol{v}\}$ in \boldsymbol{G} by $(\boldsymbol{u}, \boldsymbol{v})$ and $(\boldsymbol{v}, \boldsymbol{u})$ in \boldsymbol{G}^{\prime}.
(2) set $\ell(\boldsymbol{u}, \boldsymbol{v})=\boldsymbol{\ell}(\boldsymbol{v}, \boldsymbol{u})=\ell(\{\boldsymbol{u}, \boldsymbol{v}\})$
(0) Exercise: show reduction works. Relies on non-negativity!

Single-Source Shortest Paths:

Non-Negative Edge Lengths

(1) Single-Source Shortest Path Problems
(1) Input: A (undirected or directed) graph $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{E})$ with non-negative edge lengths. For edge $\boldsymbol{e}=(\boldsymbol{u}, \boldsymbol{v}), \ell(\boldsymbol{e})=\ell(\boldsymbol{u}, \boldsymbol{v})$ is its length.
(2) Given nodes $\boldsymbol{s}, \boldsymbol{t}$ find shortest path from \boldsymbol{s} to \boldsymbol{t}.
(3) Given node \boldsymbol{s} find shortest path from \boldsymbol{s} to all other nodes.
(2) (1) Restrict attention to directed graphs
(2) Undirected graph problem can be reduced to directed graph problem - how?
(1) Given undirected graph \boldsymbol{G}, create a new directed graph \boldsymbol{G}^{\prime} by replacing each edge $\{\boldsymbol{u}, \boldsymbol{v}\}$ in \boldsymbol{G} by $(\boldsymbol{u}, \boldsymbol{v})$ and $(\boldsymbol{v}, \boldsymbol{u})$ in \boldsymbol{G}^{\prime}.
(2) set $\ell(\boldsymbol{u}, \boldsymbol{v})=\ell(\boldsymbol{v}, \boldsymbol{u})=\ell(\{\boldsymbol{u}, \boldsymbol{v}\})$
(3) Exercise: show reduction works. Relies on non-negativity!

THE END

(for now)

