Algorithms \& Models of Computation

CS/ECE 374, Fall 2020

17.2

Breadth First Search

Breadth First Search (BFS)

Overview

(a) BFS is obtained from BasicSearch by processing edges using a queue data structure.
(8) It processes the vertices in the graph in the order of their shortest distance from the vertex \boldsymbol{s} (the start vertex).

As such...

(1) DFS good for exploring graph structure
(2) BFS good for exploring distances

xkcd take on DFS

Queue Data Structure

Queues

A queue is a list of elements which supports the operations:
(1) enqueue: Adds an element to the end of the list
(2) dequeue: Removes an element from the front of the list

Elements are extracted in first-in first-out (FIFO) order, i.e., elements are picked in the order in which they were inserted.

BFS Algorithm

Given (undirected or directed) graph $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{E})$ and node $\boldsymbol{s} \in \boldsymbol{V}$

```
BFS(s)
    Mark all vertices as unvisited
    Initialize search tree T to be empty
    Mark vertex s as visited
    set Q to be the empty queue
    enqueue( }\boldsymbol{Q},\boldsymbol{s}\mathrm{ )
        while Q is nonempty do
        u}=\operatorname{dequeue(\boldsymbol{Q})
        for each vertex v \in Adj(u)
        if v}\mathrm{ is not visited then
            add edge (u,v) to T
            Mark v as visited and enqueue(v)
```


Proposition

BFS(s) runs in $\boldsymbol{O}(\boldsymbol{n}+\boldsymbol{m})$ time.

BFS: An Example in Undirected Graphs

$\begin{array}{lllll}\text { T1. } & {[1]} & \text { T4. } & {[4,5,7,8]} & \text { T7. }\end{array}[8,6]$

BFS: An Example in Undirected Graphs

BFS: An Example in Undirected Graphs

BFS: An Example in Undirected Graphs

$\begin{array}{llllll}\text { T1. } & {[1]} & \text { T4. } & {[4,5,7,8]} & \text { T7. } & {[8,6]} \\ \text { T2. } & {[2,3]} & \text { T5. } & {[5,7,8]} & \text { T8. } & {[6]} \\ \text { T3. } & {[3,4,5]} & \text { T6. } & {[7,8,6]} & \text { T9. } & {[]}\end{array}$

BFS: An Example in Undirected Graphs

BFS: An Example in Undirected Graphs

6

T1.	$[1]$	T4.	$[4,5,7,8]$
T2.	$[2,3]$	T5.	$[5,7,8]$
T3.	$[3,4,5]$	T6.	$[7,8,6]$

BFS: An Example in Undirected Graphs

T1.	$[1]$	T4.	$[4,5,7,8]$
T2.	$[2,3]$	T5.	$[5,7,8]$
T3.	$[3,4,5]$	T6.	$[7,8,6]$

BFS: An Example in Undirected Graphs

BFS: An Example in Undirected Graphs

BFS: An Example in Undirected Graphs

T7. $[8,6]$
T2. $[2,3] \quad$ T5. $[5,7,8]$
T3. $[3,4,5] \quad$ T6. $[7,8,6]$
T8. [6]
T9. []
BFS tree is the set of purple edges.

BFS: An Example in Undirected Graphs

T7. $[8,6]$
T2. $[2,3] \quad$ T5. $[5,7,8]$
T3. $[3,4,5] \quad$ T6. $[7,8,6]$
T8. [6]
T9. []
BFS tree is the set of purple edges.

BFS: An Example in Undirected Graphs

T7. $[8,6]$
T2. $[2,3] \quad$ T5. $[5,7,8]$
T3. $[3,4,5] \quad$ T6. $[7,8,6]$
T8. [6]
T9. []
BFS tree is the set of purple edges.

BFS: An Example in Directed Graphs

THE END

(for now)

