Algorithms \& Models of Computation

CS/ECE 374, Fall 2020

16.4

DFS in Directed Graphs

DFS

Algorithms \& Models of Computation
 CS/ECE 374, Fall 2020
 16.4.1
 DFS in Directed Graphs: Pre/Post numbering

DFS in Directed Graphs

DFS(G)

Mark all nodes \boldsymbol{u} as unvisited
\boldsymbol{T} is set to \emptyset
time $=0$
while there is an unvisited node \boldsymbol{u} do DFS(u)
Output \boldsymbol{T}

```
DFS(u)
    Mark u as visited
    pre(u)= ++time
    for each edge (u,v) in Out(u) do
        if v}\mathrm{ is not visited
            add edge (u,v) to T
            DFS(v)
    post(u)= ++time
```

Example of DFS in directed graph

Example of DFS in directed graph

DFS Properties

Generalizing ideas from undirected graphs:
(1) DFS (\boldsymbol{G}) takes $\boldsymbol{O}(\boldsymbol{m}+\boldsymbol{n})$ time.
© Edges added form a branching: a forest of out-trees. Output of DFS (G) depends on the order in which vertices are considered
? If u is the first vertex considered by $\operatorname{DFS}(G)$ then $D F S(u)$ outputs a directed out-tree T rooted at u and a vertex v is in T if and only if $v \in \operatorname{rch}(u)$
(4) For any two vertices x, y the intervals $[\operatorname{pre}(x), \operatorname{post}(x)]$ and $[\operatorname{pre}(y), \operatorname{post}(y)]$ are either disjoint or one is contained in the other.

Note: Not obvious whether DFS(G) is useful in directed graphs but it is.

DFS Properties

Generalizing ideas from undirected graphs:
(1) $\operatorname{DFS}(G)$ takes $O(m+n)$ time.
(2) Edges added form a branching: a forest of out-trees. Output of $\operatorname{DFS}(G)$ depends on the order in which vertices are considered.
(3) If u is the first vertex considered by $\operatorname{DFS}(G)$ then $D F S(u)$ outputs a directed out-tree T rooted at u and a vertex v is in T if and only if $v \in \operatorname{rch}(\boldsymbol{u})$
(4) For any two vertices x, y the intervals $[\operatorname{nre}(x), \operatorname{nost}(x)]$ and $[\operatorname{nre}(y), \operatorname{nost}(y)]$ are either disjoint or one is contained in the other.

Note: Not obvious whether $\operatorname{DFS}(G)$ is useful in directed graphs but it is.

DFS Properties

Generalizing ideas from undirected graphs:
(1) $\operatorname{DFS}(G)$ takes $O(m+n)$ time.
(2) Edges added form a branching: a forest of out-trees. Output of $\operatorname{DFS}(G)$ depends on the order in which vertices are considered.
(3) If u is the first vertex considered by $\operatorname{DFS}(G)$ then $\operatorname{DFS}(\boldsymbol{u})$ outputs a directed out-tree \boldsymbol{T} rooted at \boldsymbol{u} and a vertex \boldsymbol{v} is in \boldsymbol{T} if and only if $\boldsymbol{v} \in \operatorname{rch}(\boldsymbol{u})$
(9) For any two vertices x, y the intervals $[\operatorname{pre}(x), \operatorname{post}(x)]$ and $[\operatorname{pre}(y), \operatorname{post}(y)]$ are either disjoint or one is contained in the other.

Not obvious whether DFS($\mathbf{G})$ is useful in directed graphs but it is.

DFS Properties

Generalizing ideas from undirected graphs:
(1) $\operatorname{DFS}(G)$ takes $O(\boldsymbol{m}+\boldsymbol{n})$ time.
(2) Edges added form a branching: a forest of out-trees. Output of $\operatorname{DFS}(G)$ depends on the order in which vertices are considered.
(3) If u is the first vertex considered by $\operatorname{DFS}(G)$ then $\operatorname{DFS}(u)$ outputs a directed out-tree \boldsymbol{T} rooted at \boldsymbol{u} and a vertex \boldsymbol{v} is in \boldsymbol{T} if and only if $\boldsymbol{v} \in \operatorname{rch}(\boldsymbol{u})$
(4) For any two vertices x, y the intervals $[\operatorname{pre}(x), \operatorname{post}(x)]$ and $[\operatorname{pre}(y), \operatorname{post}(y)]$ are either disjoint or one is contained in the other.
Note: Not obvious whether DFS(G) is useful in directed graphs but it is.

DFS Properties

Generalizing ideas from undirected graphs:
(1) $\operatorname{DFS}(G)$ takes $O(m+n)$ time.
(2) Edges added form a branching: a forest of out-trees. Output of $\operatorname{DFS}(G)$ depends on the order in which vertices are considered.
(3) If u is the first vertex considered by $\operatorname{DFS}(G)$ then $\operatorname{DFS}(u)$ outputs a directed out-tree \boldsymbol{T} rooted at \boldsymbol{u} and a vertex \boldsymbol{v} is in \boldsymbol{T} if and only if $\boldsymbol{v} \in \operatorname{rch}(\boldsymbol{u})$
(4) For any two vertices x, y the intervals $[\operatorname{pre}(x), \operatorname{post}(x)]$ and $[\operatorname{pre}(y), \operatorname{post}(y)]$ are either disjoint or one is contained in the other.
Note: Not obvious whether $\operatorname{DFS}(G)$ is useful in directed graphs but it is.

DFS tree and related edges

Edges of G can be classified with respect to the DFS tree T as:
(1) Tree edges that belong to T
(2) A forward edge is a non-tree edges (x, y) such that $\operatorname{pre}(x)<\operatorname{pre}(y)<\operatorname{post}(y)<\operatorname{post}(x)$.
(0) A backward edge is a non-tree edge (y, x) such that $\operatorname{pre}(x)<\operatorname{pre}(y)<\operatorname{post}(y)<\operatorname{post}(x)$.

(0) A cross edge is a non-tree edges (x, y) such that the intervals $[\operatorname{pre}(x), \operatorname{post}(x)]$ and $[\operatorname{pre}(y), \operatorname{post}(y)]$ are disjoint.

Types of Edges

THE END

(for now)

