Algorithms \& Models of Computation

CS/ECE 374, Fall 2020

16.2.2

Topological ordering

Total recall: Order on a set

Order or strict total order on a set X is a binary relation \prec on X, such that
(1) Transitivity: $\forall x . y, z \in X \quad x \prec y$ and $y \prec z \Longrightarrow x \prec z$.
(2) For any $x, y \in X$, exactly one of the following holds:
$x \prec y, y \prec x$ or $x=y$.

Cannot have $x_{1}, \ldots, x_{m} \in X$, such that $x_{1} \prec X_{2}, \ldots, x_{m-1} \prec x_{m}, x_{m} \prec x_{1}$,
because.

Order on a (finite) set X : listing the elements of X from smallest to largest.

Total recall: Order on a set

Order or strict total order on a set \boldsymbol{X} is a binary relation \prec on \boldsymbol{X}, such that
(1) Transitivity: $\forall x . y, z \in X \quad x \prec y$ and $y \prec z \Longrightarrow x \prec z$.
(2) For any $x, y \in X$, exactly one of the following holds:
$x \prec y, y \prec x$ or $x=y$.

Cannot have $x_{1}, \ldots, x_{m} \in X$, such that $x_{1} \prec X_{2}, \ldots, x_{m-1} \prec x_{m}, x_{m} \prec x_{1}$, because...

Order on a (finite) set \boldsymbol{X} : listing the elements of \boldsymbol{X} from smallest to largest.

Total recall: Order on a set

Order or strict total order on a set \boldsymbol{X} is a binary relation \prec on \boldsymbol{X}, such that
(1) Transitivity: $\forall x . y, z \in X \quad x \prec y$ and $y \prec z \Longrightarrow x \prec z$.
(2) For any $x, y \in X$, exactly one of the following holds:
$x \prec y, y \prec x$ or $x=y$.

Cannot have $x_{1}, \ldots, x_{m} \in X$, such that $x_{1} \prec X_{2}, \ldots, x_{m-1} \prec x_{m}, x_{m} \prec x_{1}$, because...

Order on a (finite) set \boldsymbol{X} : listing the elements of \boldsymbol{X} from smallest to largest.

Convention about writing edges

(1) Undirected graph edges:

$$
\boldsymbol{u} \boldsymbol{v}=\{\boldsymbol{u}, \boldsymbol{v}\}=\boldsymbol{v} \boldsymbol{u} \in \mathrm{E}
$$

(2) Directed graph edges:

$$
u \rightarrow v \quad \equiv \quad(u, v) \quad \equiv \quad(u \rightarrow v)
$$

Topological Ordering/Sorting

Topological Ordering of G

Graph G

Definition

A topological ordering/topological sorting of $G=(V, E)$ is an ordering \prec on V such that if $(\boldsymbol{u} \rightarrow \boldsymbol{v}) \in E$ then $\boldsymbol{u} \prec \boldsymbol{v}$.

Informal equivalent definition:

One can order the vertices of the graph along a line (say the x-axis) such that all edges are from left to right.

DAGs and Topological Sort

Lemma

A directed graph G can be topologically ordered $\Longleftrightarrow G$ is a DAG.
Need to show both directions.

DAGs and Topological Sort

Lemma
 A directed graph G is a $\mathrm{DAG} \Longrightarrow G$ can be topologically ordered.

Proof.

Consider the following algorithm:
(1) Pick a source \boldsymbol{u}, output it.
(2) Remove \boldsymbol{u} and all edges out of \boldsymbol{u}.
(0) Repeat until graph is empty.

Exercise: prove this gives topological sort.

Topological ordering in linear time

Exercise: show algorithm can be implemented in $\mathbf{O}(\boldsymbol{m}+\boldsymbol{n})$ time.

Topological Sort: Example

DAGs and Topological Sort

Lemma

A directed graph G can be topologically ordered $\Longrightarrow G$ is a DAG.

Proof.

Proof by contradiction. Suppose G is not a DAG and has a topological ordering \prec. G has a cycle

$$
C=u_{1} \rightarrow u_{2} \rightarrow \cdots \rightarrow u_{k} \rightarrow u_{1} .
$$

Then $\boldsymbol{u}_{1} \prec \boldsymbol{u}_{2} \prec \ldots \prec \boldsymbol{u}_{\boldsymbol{k}} \prec \boldsymbol{u}_{1}$
A contradiction (to \prec being an order). Not possible to topologically order the vertices.

DAGs and Topological Sort

Lemma

A directed graph G can be topologically ordered $\Longrightarrow G$ is a DAG.

Proof.

Proof by contradiction. Suppose G is not a DAG and has a topological ordering \prec. G has a cycle

$$
C=\boldsymbol{u}_{1} \rightarrow \mathbf{u}_{2} \rightarrow \cdots \rightarrow \boldsymbol{u}_{\mathbf{k}} \rightarrow \mathbf{u}_{1}
$$

Then $\boldsymbol{u}_{1} \prec \boldsymbol{u}_{2} \prec \ldots \prec \boldsymbol{u}_{\boldsymbol{k}} \prec \boldsymbol{u}_{1}$
$\Longrightarrow \boldsymbol{u}_{1} \prec \boldsymbol{u}_{1}$.
A contradiction (to \prec being an order). Not possible to topologically order the vertices.

Regular sorting and DAGs

DAGs and Topological Sort

(1) Note: A DAG G may have many different topological sorts.
(2) Exercise: What is a DAG with the most number of distinct topological sorts for a given number n of vertices?
(3) Exercise: What is a DAG with the least number of distinct topological sorts for a given number \boldsymbol{n} of vertices?

THE END

(for now)

