Algorithms \& Models of Computation

CS/ECE 374, Fall 2020

15.5

Algorithms via Basic Search

Algorithms via Basic Search - I

(1) Given G and nodes \boldsymbol{u} and \boldsymbol{v}, can \boldsymbol{u} reach \boldsymbol{v} ?
(2) Given \boldsymbol{G} and \boldsymbol{u}, compute $\operatorname{rch}(\boldsymbol{u})$.

Use Explore (G, u) to compute $\operatorname{rch}(u)$ in $O(n+m)$ time.

Algorithms via Basic Search - II

(1) Given G and \boldsymbol{u}, compute all \boldsymbol{v} that can reach \boldsymbol{u}, that is all \boldsymbol{v} such that $u \in \operatorname{rch}(v)$. Naive: $O(n(n+m))$

Definition (Reverse graph.)
Given $G=(V, E), G^{r e v}$ is the graph with edge directions reversed $G^{\text {rev }}=\left(V, E^{\prime}\right)$ where $E^{\prime}=\{(y, x) \mid(x, y) \in E\}$

Compute rch(u) in $G^{\text {rev! }}$

(1) Correctness: exercise
(2) Running time: $O(n+m)$ to obtain $G^{r e v}$ from G and $O(n+m)$ time to compute $r c h(u)$ via Basic Search. If both Out (v) and $\operatorname{In}(v)$ are available at each v then no need to explicitly compute $G^{\text {rev }}$. Can do $\operatorname{Explore}(G, u)$ in $G^{\text {rev }}$ implicitly.

Algorithms via Basic Search - II

(1) Given G and \boldsymbol{u}, compute all \boldsymbol{v} that can reach \boldsymbol{u}, that is all \boldsymbol{v} such that $u \in \operatorname{rch}(v)$. Naive: $O(n(n+m))$

Definition (Reverse graph.)
Given $G=(V, E), G^{r e v}$ is the graph with edge directions reversed $G^{r e v}=\left(V, E^{\prime}\right)$ where $E^{\prime}=\{(y, x) \mid(x, y) \in E\}$

Compute $\operatorname{rch}(\boldsymbol{u})$ in $G^{r e v}$!

(1) Correctness: exercise
(2) Running time: $O(n+m)$ to obtain $G^{r e v}$ from G and $O(n+m)$ time to compute $\operatorname{rch}(\boldsymbol{u})$ via Basic Search. If both Out(v) and $\operatorname{In}(\boldsymbol{v})$ are available at each v then no need to explicitly compute $G^{r e v}$. Can do $\operatorname{Explore}(G, u)$ in $G^{r e v}$ implicitly.

Algorithms via Basic Search - II

(1) Given \boldsymbol{G} and \boldsymbol{u}, compute all \boldsymbol{v} that can reach \boldsymbol{u}, that is all \boldsymbol{v} such that $u \in \operatorname{rch}(v)$. Naive: $O(n(n+m))$

Definition (Reverse graph.)

Given $G=(V, E), G^{r e v}$ is the graph with edge directions reversed $G^{\text {rev }}=\left(V, E^{\prime}\right)$ where $E^{\prime}=\{(y, x) \mid(x, y) \in E\}$

Compute $\operatorname{rch}(u)$ in $G^{r e v}$!
(1) Correctness: exercise
(2) Running time: $O(n+m)$ to obtain $G^{\text {rev }}$ from G and $O(n+m)$ time to compute $\operatorname{rch}(\boldsymbol{u})$ via Basic Search. If both $O u t(v)$ and $\operatorname{In}(v)$ are available at each v then no need to explicitly compute $G^{r e v}$. Can do $\operatorname{Explore}(G, u)$ in $G^{r e v}$ implicitly.

Algorithms via Basic Search - II

(1) Given \boldsymbol{G} and \boldsymbol{u}, compute all \boldsymbol{v} that can reach \boldsymbol{u}, that is all \boldsymbol{v} such that $u \in \operatorname{rch}(v)$. Naive: $O(n(n+m))$

Definition (Reverse graph.)

Given $G=(V, E), G^{r e v}$ is the graph with edge directions reversed $G^{\text {rev }}=\left(V, E^{\prime}\right)$ where $E^{\prime}=\{(y, x) \mid(x, y) \in E\}$

Compute $\operatorname{rch}(\boldsymbol{u})$ in $G^{r e v!}$
(1) Correctness: exercise
(2) Running time: $\boldsymbol{O}(\boldsymbol{n}+\boldsymbol{m})$ to obtain $G^{\text {rev }}$ from \boldsymbol{G} and $\boldsymbol{O}(\boldsymbol{n}+\boldsymbol{m})$ time to compute $\operatorname{rch}(\boldsymbol{u})$ via Basic Search. If both $\operatorname{Out}(\boldsymbol{v})$ and $\operatorname{In}(\boldsymbol{v})$ are available at each \boldsymbol{v} then no need to explicitly compute $G^{r e v}$. Can do $\operatorname{Explore}(\boldsymbol{G}, \boldsymbol{u})$ in $G^{\text {rev }}$ implicitly.

Algorithms via Basic Search - III

$$
\operatorname{SCC}(\boldsymbol{G}, \boldsymbol{u})=\{\boldsymbol{v} \mid \boldsymbol{u} \text { is strongly connected to } \boldsymbol{v}\}
$$

(1) Find the strongly connected component containing node \boldsymbol{u}. That is, compute $\operatorname{SCC}(G, u)$

```
\(\operatorname{SCC}(G, u)=\operatorname{rch}(G, u) \cap \operatorname{rch}\left(G^{r e v}, u\right)\)
```

Hence, $\operatorname{SCC}(\mathbf{G}, \boldsymbol{u})$ can be computed with $\operatorname{Explore}(\mathbf{G}, \boldsymbol{u})$ and $\operatorname{Explore}\left(G^{r e v}, \boldsymbol{u}\right)$.
Total $O(n+m)$ time.

Why can $\operatorname{rch}(G, u) \cap \operatorname{rch}\left(G^{r e v}, u\right)$ be done in $O(n)$ time?

Algorithms via Basic Search - III

$\operatorname{SCC}(\boldsymbol{G}, u)=\{v \mid u$ is strongly connected to $v\}$

(1) Find the strongly connected component containing node \boldsymbol{u}. That is, compute $\operatorname{SCC}(\boldsymbol{G}, \boldsymbol{u})$.

```
\(\operatorname{SCC}(G, u)=\operatorname{rch}(G, u) \cap \operatorname{rch}\left(G^{r e v}, u\right)\)
```

Hence, $\operatorname{SCC}(G, u)$ can be computed with $\operatorname{Explore}(G, u)$ and $\operatorname{Explore}\left(G^{r e v}, u\right)$ Total $O(n+m)$ time

Why can $\operatorname{rch}(G, u) \cap \operatorname{rch}\left(G^{r e v}, u\right)$ be done in $O(n)$ time?

Algorithms via Basic Search - III

$\operatorname{SCC}(\boldsymbol{G}, \boldsymbol{u})=\{\boldsymbol{v} \mid \boldsymbol{u}$ is strongly connected to $\boldsymbol{v}\}$

(1) Find the strongly connected component containing node \boldsymbol{u}. That is, compute $\operatorname{SCC}(\boldsymbol{G}, \boldsymbol{u})$.
$\operatorname{SCC}(\boldsymbol{G}, \boldsymbol{u})=\operatorname{rch}(\boldsymbol{G}, \boldsymbol{u}) \cap \operatorname{rch}\left(\boldsymbol{G}^{\boldsymbol{r e v}}, \boldsymbol{u}\right)$
Hence, $\operatorname{SCC}(G, u)$ can be computed with Explore (G, u) and Explore($\left.{ }^{\text {rev }}, \mathbf{u}\right)$ Total $O(n+m)$ time

Why can $\operatorname{rch}(G, u) \cap \operatorname{rch}\left(G^{r e v}, u\right)$ be done in $O(n)$ time?

Algorithms via Basic Search - III

$\operatorname{SCC}(\boldsymbol{G}, \boldsymbol{u})=\{\boldsymbol{v} \mid \boldsymbol{u}$ is strongly connected to $\boldsymbol{v}\}$

(1) Find the strongly connected component containing node \boldsymbol{u}. That is, compute $\operatorname{SCC}(\boldsymbol{G}, \boldsymbol{u})$.
$\operatorname{SCC}(\boldsymbol{G}, \boldsymbol{u})=\operatorname{rch}(\boldsymbol{G}, \boldsymbol{u}) \cap \operatorname{rch}\left(\boldsymbol{G}^{\text {rev }}, \boldsymbol{u}\right)$
Hence, $\operatorname{SCC}(\boldsymbol{G}, \boldsymbol{u})$ can be computed with $\operatorname{Explore}(\boldsymbol{G}, \boldsymbol{u})$ and $\operatorname{Explore}\left(\boldsymbol{G}^{\text {rev }}, \boldsymbol{u}\right)$. Total $O(n+m)$ time.

Why can $\operatorname{rch}(\boldsymbol{G}, \boldsymbol{u}) \cap \operatorname{rch}\left(\boldsymbol{G}^{r e v}, \boldsymbol{u}\right)$ be done in $\boldsymbol{O}(\boldsymbol{n})$ time?

SCC I: Graph G and its reverse graph $\mathrm{G}^{\mathrm{rev}}$

Graph G

Reverse graph $\mathrm{G}^{\text {rev }}$

SCC II: Graph G a vertex F

and its reachable set $\mathbf{r c h}(G, F)$

Graph G

Reachable set of vertices from F

SCC III: Graph G a vertex F

and the set of vertices that can reach it in $G: \mathbf{r c h}\left(\mathrm{G}^{\mathrm{rev}}, F\right)$

Graph G

Set of vertices that can reach F, computed via DFS in the reverse graph $G^{\text {rev }}$.

SCC IV: Graph G a vertex F and...
its strong connected component in $\mathrm{G}: \operatorname{SCC}(\mathrm{G}, \mathrm{F})$

Graph G


```
SCC(G,F)
    = rch(G,F)\cap\operatorname{rch}(\mp@subsup{G}{}{\textrm{rev}},F)
```


Algorithms via Basic Search - IV

(1) Is G strongly connected?

Pick arbitrary vertex \boldsymbol{u}. Check if $\operatorname{SCC}(\boldsymbol{G}, \boldsymbol{u})=\boldsymbol{V}$

Algorithms via Basic Search - IV

(1) Is G strongly connected?

Pick arbitrary vertex \boldsymbol{u}. Check if $\operatorname{SCC}(\boldsymbol{G}, \boldsymbol{u})=\boldsymbol{V}$.

Algorithms via Basic Search - V

(1) Find all strongly connected components of G.

Question: Why doesn't removing one strong connected components affect the other strong connected components?

Running time: $O(n(n+m))$

Question: Can we do it in $\boldsymbol{O}(\boldsymbol{n}+\boldsymbol{m})$ time?

Algorithms via Basic Search - V

(1) Find all strongly connected components of G.

$$
\begin{aligned}
& \text { While } \boldsymbol{G} \text { is not empty do } \\
& \text { Pick arbitrary node } \boldsymbol{u} \\
& \text { find } \boldsymbol{S}=\operatorname{SCC}(\boldsymbol{G}, \boldsymbol{u}) \\
& \text { Remove } \boldsymbol{S} \text { from } \boldsymbol{G}
\end{aligned}
$$

Question: Why doesn't removing one strong connected components affect the other strong connected components?

Running time: $O(n(n+m))$

Question: Can we do it in $O(n+m)$ time?

Algorithms via Basic Search - V

(1) Find all strongly connected components of G.

```
While G is not empty do
    Pick arbitrary node и
    find S = SCC(G,u)
    Remove S from G
```

Question: Why doesn't removing one strong connected components affect the other strong connected components?

Running time: $O(n(n+m))$
Question: Can we do it in $\boldsymbol{O}(\boldsymbol{n}+\boldsymbol{m})$ time?

Algorithms via Basic Search - V

(1) Find all strongly connected components of G.

```
While G is not empty do
    Pick arbitrary node и
    find S = SCC(G,u)
    Remove S from G
```

Question: Why doesn't removing one strong connected components affect the other strong connected components?

Running time: $\boldsymbol{O}(\boldsymbol{n}(\boldsymbol{n}+\boldsymbol{m}))$.
Question: Can we do it in $O(n+m)$ time?

Algorithms via Basic Search - V

(1) Find all strongly connected components of G.

```
While G is not empty do
    Pick arbitrary node и
    find S = SCC(G,u)
    Remove S from G
```

Question: Why doesn't removing one strong connected components affect the other strong connected components?

Running time: $\boldsymbol{O}(\boldsymbol{n}(\boldsymbol{n}+\boldsymbol{m}))$.
Question: Can we do it in $\boldsymbol{O}(\boldsymbol{n}+\boldsymbol{m})$ time?

THE END

(for now)

