## Algorithms \& Models of Computation CS/ECE 374, Fall 2020 <br> 15.4 <br> Directed Graphs and Decomposition

## Directed Graphs

## Definition

A directed graph $G=(\boldsymbol{V}, \boldsymbol{E})$ consists of
(1) set of vertices/nodes $V$ and
(2) a set of edges/arcs $\boldsymbol{E} \subseteq \mathbf{V} \times \boldsymbol{V}$.


An edge is an ordered pair of vertices. $(\boldsymbol{u}, \boldsymbol{v})$ different from $(\boldsymbol{v}, \boldsymbol{u})$.

## Examples of Directed Graphs

In many situations relationship between vertices is asymmetric:
(1) Road networks with one-way streets.
(2) Web-link graph: vertices are web-pages and there is an edge from page $\boldsymbol{p}$ to page $\boldsymbol{p}^{\prime}$ if $\boldsymbol{p}$ has a link to $\boldsymbol{p}^{\prime}$. Web graphs used by Google with PageRank algorithm to rank pages.
(3) Dependency graphs in variety of applications: link from $\boldsymbol{x}$ to $\boldsymbol{y}$ if $\boldsymbol{y}$ depends on $\boldsymbol{x}$. Make files for compiling programs.
(4) Program Analysis: functions/procedures are vertices and there is an edge from $x$ to $y$ if $x$ calls $y$.

## Directed Graph Representation

Graph $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{E})$ with $\boldsymbol{n}$ vertices and $\boldsymbol{m}$ edges:
(1) Adjacency Matrix: $n \times n$ asymmetric matrix $A$. $A[u, v]=1$ if $(u, v) \in E$ and $\bar{A}[u, v]=0$ if $(u, v) \notin E . \bar{A}[u, v]$ is not same as $A[v, u]$.
(2) Adjacency Lists: for each node $\boldsymbol{u}, \operatorname{Out}(\boldsymbol{u})$ (also referred to as $\operatorname{Adj}(\boldsymbol{u})$ ) and $\ln (\boldsymbol{u})$ store out-going edges and in-coming edges from $\boldsymbol{u}$.

Default representation is adjacency lists.

## A Concrete Representation for Directed Graphs

Concrete representation discussed previously for undirected graphs easily extends to directed graphs.

information including end point indices


## Directed Connectivity

Given a graph $G=(\boldsymbol{V}, \boldsymbol{E})$ :
(1) A (directed) path is a sequence of distinct vertices $v_{1}, v_{2}, \ldots, v_{k}$ such that $\left(\boldsymbol{v}_{\boldsymbol{i}}, \boldsymbol{v}_{\boldsymbol{i}+1}\right) \in E$ for $1 \leq \boldsymbol{i} \leq \boldsymbol{k}-1$. The length of the path is $\boldsymbol{k}-1$ and the path is from $\boldsymbol{v}_{1}$ to $\boldsymbol{v}_{\boldsymbol{k}}$.
By convention, a single node $\boldsymbol{u}$ is a path of length 0 .

## Directed Connectivity

Given a graph $G=(V, E)$ :
(1) A (directed) path is a sequence of distinct vertices $v_{1}, v_{2}, \ldots, v_{k}$ such that $\left(v_{i}, \boldsymbol{v}_{\boldsymbol{i}+1}\right) \in E$ for $1 \leq \boldsymbol{i} \leq \boldsymbol{k}-1$. The length of the path is $\boldsymbol{k}-1$ and the path is from $\boldsymbol{v}_{1}$ to $\boldsymbol{v}_{\boldsymbol{k}}$.
By convention, a single node $\boldsymbol{u}$ is a path of length 0 .
(2) A cycle is a sequence of distinct vertices $v_{1}, v_{2}, \ldots, v_{k}$ such that $\left(v_{i}, v_{i+1}\right) \in E$ for $1 \leq i \leq k-1$ and $\left(v_{k}, v_{1}\right) \in E$.
By convention, a single node $\boldsymbol{u}$ is not a cycle.
(3) A vertex $u$ can reach $v$ if there is a path from $u$ to $v$. Alternatively $v$ can be reached from $\boldsymbol{u}$
a Let $\operatorname{rch}(\boldsymbol{u})$ be the set of all vertices reachable from $u$

## Directed Connectivity

Given a graph $G=(\boldsymbol{V}, \boldsymbol{E})$ :
(1) A (directed) path is a sequence of distinct vertices $v_{1}, v_{2}, \ldots, v_{k}$ such that $\left(v_{i}, \boldsymbol{v}_{\boldsymbol{i}+1}\right) \in E$ for $1 \leq \boldsymbol{i} \leq \boldsymbol{k}-1$. The length of the path is $\boldsymbol{k}-1$ and the path is from $\boldsymbol{v}_{1}$ to $\boldsymbol{v}_{\boldsymbol{k}}$.
By convention, a single node $\boldsymbol{u}$ is a path of length 0 .
(2) A cycle is a sequence of distinct vertices $v_{1}, v_{2}, \ldots, v_{k}$ such that $\left(v_{i}, v_{i+1}\right) \in E$ for $1 \leq i \leq k-1$ and $\left(v_{k}, v_{1}\right) \in E$.
By convention, a single node $\boldsymbol{u}$ is not a cycle.
(3) A vertex $\boldsymbol{u}$ can reach $\boldsymbol{v}$ if there is a path from $\boldsymbol{u}$ to $\boldsymbol{v}$. Alternatively $\boldsymbol{v}$ can be reached from $\boldsymbol{u}$

- Let $\operatorname{rch}(u)$ be the set of all vertices reachable from $u$.


## Directed Connectivity

Given a graph $G=(\boldsymbol{V}, \boldsymbol{E})$ :
(1) A (directed) path is a sequence of distinct vertices $v_{1}, v_{2}, \ldots, v_{k}$ such that $\left(v_{i}, \boldsymbol{v}_{\boldsymbol{i}+1}\right) \in E$ for $1 \leq \boldsymbol{i} \leq \boldsymbol{k}-1$. The length of the path is $\boldsymbol{k}-1$ and the path is from $\boldsymbol{v}_{1}$ to $\boldsymbol{v}_{\boldsymbol{k}}$.
By convention, a single node $\boldsymbol{u}$ is a path of length 0 .
(2) A cycle is a sequence of distinct vertices $v_{1}, v_{2}, \ldots, v_{k}$ such that $\left(v_{i}, v_{i+1}\right) \in E$ for $1 \leq i \leq k-1$ and $\left(v_{k}, v_{1}\right) \in E$.
By convention, a single node $\boldsymbol{u}$ is not a cycle.
(3) A vertex $\boldsymbol{u}$ can reach $\boldsymbol{v}$ if there is a path from $\boldsymbol{u}$ to $\boldsymbol{v}$. Alternatively $\boldsymbol{v}$ can be reached from $\boldsymbol{u}$
(9) Let $\operatorname{rch}(\boldsymbol{u})$ be the set of all vertices reachable from $\boldsymbol{u}$.

## Connectivity contd

Asymmetricity: $D$ can reach $B$ but $B$ cannot reach $D$


## Questions:

- Is there a notion of connected components?
(2) How do we understand connectivity in directed graphs?


## Connectivity contd

Asymmetricity: $D$ can reach $B$ but $B$ cannot reach $D$


## Questions:

(1) Is there a notion of connected components?
(c) How do we understand connectivity in directed graphs?

## THE END

(for now)

