Algorithms \& Models of Computation

CS/ECE 374, Fall 2020

14.5

Supplemental: Context free grammars: The CYK Algorithm

Algorithms \& Models of Computation

CS/ECE 374, Fall 2020

14.5.1

CYK: Problem statement, basic idea, and an example

Parsing

We saw regular languages and context free languages.

Most programming languages are specified via context-free grammars. Why?

- CFLs are sufficiently expressive to support what is needed.
- At the same time one can "efficiently" solve the parsing problem: given a string/program \boldsymbol{w}, is it a valid program according to the CFG specification of the programming language?

CFG specification for C

Algorithmic Problem

Given a $\operatorname{CFG} \boldsymbol{G}=(\mathcal{v})(\mathcal{T})$ S) and a string $\boldsymbol{w} \in \boldsymbol{T}^{*}$, is $\boldsymbol{w} \in \boldsymbol{L}(\boldsymbol{G})$?

- That is, does \boldsymbol{S} derive \mathbf{W} ?
- Equivalently, is there a parse tree for \boldsymbol{w} ?

```
Simplifying assumption: G is in Chomsky Normal Form (CNF)
- Productions are all of the form A}->\boldsymbol{BC}\mathrm{ or }\boldsymbol{A}->\boldsymbol{a}\mathrm{ .
    If }\epsilon\inL\mathrm{ then S }->\epsilon\mathrm{ is also allowed.
    (This is the only place in the grammar that has an \varepsilon.)
    - Every CFG G can be converted into CNF form via an efficient algorithm
    - Advantage: parse tree of constant degree.
```


Algorithmic Problem

Given a CFG $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{T}, \boldsymbol{P}, \boldsymbol{S})$ and a string $\boldsymbol{w} \in \boldsymbol{T}^{*}$, is $\boldsymbol{w} \in \boldsymbol{L}(\boldsymbol{G})$?

- That is, does \boldsymbol{S} derive \boldsymbol{w} ?
- Equivalently, is there a parse tree for \boldsymbol{w} ?

Simplifying assumption: \boldsymbol{G} is in Chomsky Normal Form (CNF)

- Productions are all of the form $\boldsymbol{A} \rightarrow \boldsymbol{B C}$ or $\boldsymbol{A} \rightarrow \boldsymbol{a}$.

If $\varepsilon \in D$ then $S \rightarrow \epsilon$ is also allowed.
(This is the only place in the grammar that has an ε.)

- Every CFG \boldsymbol{G} can be converted into CNF form via an efficient algorithm
- Advantage: parse tree of constant degree.

Towards Recursive Algorithm

CYK Algorithm Cocke-Younger-Kasami algorithm

Assume \boldsymbol{G} is a CNF grammar.
\boldsymbol{S} derives $\boldsymbol{w} \Longleftrightarrow$ one of the following holds:

- $|\boldsymbol{w}|=\mathbf{1}$ and $\boldsymbol{S} \rightarrow \boldsymbol{w}$ is a rule in \boldsymbol{P}
- $|\boldsymbol{w}|>\mathbf{1}$ and there is a rule $S \rightarrow \boldsymbol{A B}$ and a split $\boldsymbol{w}=\boldsymbol{u} \boldsymbol{v}$ with $|\boldsymbol{u}|,|\boldsymbol{v}| \geq \mathbf{1}$ such

Towards Recursive Algorithm

CYK Algorithm = Cocke-Younger-Kasami algorithm

Assume \boldsymbol{G} is a CNF grammar.
\boldsymbol{S} derives $\boldsymbol{w} \Longleftrightarrow$ one of the following holds:

- $|\boldsymbol{w}|=\mathbf{1}$ and $\boldsymbol{S} \rightarrow \boldsymbol{w}$ is a rule in \boldsymbol{P}
- $|\boldsymbol{w}|>\mathbf{1}$ and there is a rule $\boldsymbol{S} \rightarrow \boldsymbol{A B}$ and a split $\boldsymbol{w}=\boldsymbol{u} \boldsymbol{v}$ with $|\boldsymbol{u}|,|\boldsymbol{v}| \geq \mathbf{1}$ such that \boldsymbol{A} derives \boldsymbol{u} and \boldsymbol{B} derives \boldsymbol{v}

Observation: Subproblems generated require us to know if some non-terminal \boldsymbol{A} will derive a substring of \boldsymbol{w}.

$X \rightarrow A Y$
$A \rightarrow 0$
$B \rightarrow 1$

Question:

- Is 000111 in $\boldsymbol{L}(\boldsymbol{G})$?
- Is 00011 in $\boldsymbol{L}(\boldsymbol{G})$?

Order of evaluation for iterative algorithm: increasing order of substŗing length.

Example:000111
$S \rightarrow \epsilon|A B| X B$
$Y \rightarrow A B \mid X B$
$X \rightarrow A Y$
$A \rightarrow 0$
$B \rightarrow 1$

Input:	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$

Example: 000111

```
S->\epsilon|AB| XB
Y->AB|XB
\
```

Len $=1$	A	A	A	B	B	B
Input:	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$

Example: 000111

$\boldsymbol{B} \rightarrow \mathbf{1}$						
Len=3		X				

Example: 000111

$S \rightarrow \epsilon|A B| X B$
$Y \rightarrow A B \mid X B$
$X \rightarrow A Y$
$A \rightarrow 0$
$B \rightarrow 1$

1						
Len=4		Y, S				
Len=3		X				
Len=2			Y			
Len=1	A	A	A	B	B	B
Input:	0	0	0	1	1	1

Example: 000111

$$
\begin{aligned}
& S \rightarrow \epsilon|A B| X B \\
& Y \rightarrow A B \mid X B \\
& X \rightarrow A Y \\
& A \rightarrow 0 \\
& B \rightarrow 1
\end{aligned}
$$

Example: 000111

$S \rightarrow \epsilon|A B| X B$
$Y \rightarrow A B \mid X B$
$X \rightarrow A Y$
$A \rightarrow 0$
$B \rightarrow 1$

Len=6	S												
Len=5	X												
Len=4		Y,S											
Len=3		X											
Len=2			Y										
Len=1	A	A	A	B	B	B							
Input:	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$							

Example II: 00111

$S \rightarrow \epsilon|A B| X B$
$Y \rightarrow A B \mid X B$
$X \rightarrow A Y$
$A \rightarrow 0$
$B \rightarrow 1$

Input:	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$

Example II: 00111

$S \rightarrow \epsilon|A B| X B$
$Y \rightarrow A B \mid X B$
$X \rightarrow A Y$
$A \rightarrow 0$
$B \rightarrow 1$

Len $=1$	A	A	B	B	B
Input:	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$

Example II: 00111

$$
\begin{aligned}
& S \rightarrow \epsilon|A B| X B \\
& Y \rightarrow A B \mid X B \\
& X \rightarrow A Y \\
& A \rightarrow 0 \\
& B \rightarrow 1
\end{aligned}
$$

Len=3	X				
Len=2		Y			
Len=1	A	A	B	B	B
lnput:	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$

Example II: 00111

$$
\begin{aligned}
& S \rightarrow \epsilon|A B| X B \\
& Y \rightarrow A B \mid X B \\
& X \rightarrow A Y \\
& A \rightarrow 0 \\
& B \rightarrow 1
\end{aligned}
$$

Len $=4$	Y, S				
Len=3	X				
Len=2		Y			
Len=1	A	A	B	B	B
Input:	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$

Example II: 00111

$$
\begin{aligned}
& S \rightarrow \epsilon|A B| X B \\
& Y \rightarrow A B \mid X B \\
& X \rightarrow A Y \\
& A \rightarrow 0 \\
& B \rightarrow 1
\end{aligned}
$$

Len=5					
Len=4	Y, S				
Len=3	X				
Len=2		Y			
Len=1	A	A	B	B	B
Input:	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$

THE END

(for now)

