Algorithms \& Models of Computation
CS/ECE 374, Fall 2020
14.2.6

Longest Common Subsequence Problem

LCS Problem

Definition 14.7.

LCS between two strings \boldsymbol{X} and \boldsymbol{Y} is the length of longest common subsequence between \boldsymbol{X} and \boldsymbol{Y}.
ABAZDC BACBAD

Example 14.8.
LCS between ABAZDC and BACBAD is 4 via ABAD
Derive a dynamic programming algorithm for the problem.

LCS Problem

Definition 14.7.

LCS between two strings \boldsymbol{X} and \boldsymbol{Y} is the length of longest common subsequence between \boldsymbol{X} and \boldsymbol{Y}.

> ABAZDC BACBAD

ABAZDC BACBAD

Example 14.8.

LCS between ABAZDC and BACBAD is 4 via ABAD
Derive a dynamic programming algorithm for the problem

LCS Problem

Definition 14.7.

LCS between two strings \boldsymbol{X} and \boldsymbol{Y} is the length of longest common subsequence between \boldsymbol{X} and \boldsymbol{Y}.

> ABAZDC BACBAD

ABAZDC BACBAD

Example 14.8.

LCS between ABAZDC and BACBAD is 4 via ABAD
Derive a dynamic programming algorithm for the problem.

LCS recursive definition
$\boldsymbol{A}[\mathbf{1 . . n}], B[1 . . m]$: Input strings.

$$
\operatorname{LCS}(\boldsymbol{i}, \boldsymbol{j})= \begin{cases}0 & \boldsymbol{i}=\mathbf{0} \text { or } \boldsymbol{j}=\mathbf{0} \\
\max \binom{\operatorname{LCS}(\boldsymbol{i}-\mathbf{1}, \boldsymbol{j}),}{\operatorname{LCS}(\boldsymbol{i}, \boldsymbol{j}-1)} & A[i] \neq B[j] \\
\max \left(\begin{array}{c}
\operatorname{LCS}(\boldsymbol{i}-1, j), \\
\operatorname{LCS}(\boldsymbol{i}, \boldsymbol{j}-1), \\
1+\operatorname{LCS}(i-1, j-1)
\end{array}\right) & A[i]=B[j]\end{cases}
$$

Similar to edit distance... $O(n m)$ time algorithm $O(m)$ space.

LCS recursive definition
$A[1 . . n], B[1 . . m]$: Input strings.

$$
\operatorname{LCS}(\boldsymbol{i}, \boldsymbol{j})= \begin{cases}0 & \boldsymbol{i}=\mathbf{0} \text { or } \boldsymbol{j}=\mathbf{0} \\
\max \binom{\operatorname{LCS}(\boldsymbol{i}-\mathbf{1}, \boldsymbol{j}),}{\operatorname{LCS}(\boldsymbol{i}, \boldsymbol{j}-\mathbf{1})} & A[i] \neq \boldsymbol{B}[j] \\
\max \left(\begin{array}{c}
\operatorname{LCS}(\boldsymbol{i}-1, j), \\
\operatorname{LCS}(\boldsymbol{i}, \boldsymbol{j}-1), \\
1+\boldsymbol{L C S}(\boldsymbol{i}-\mathbf{1}, \boldsymbol{j}-\mathbf{1})
\end{array}\right) & A[i]=\boldsymbol{B}[j]\end{cases}
$$

Similar to edit distance... $\boldsymbol{O}(\boldsymbol{n m})$ time algorithm $\boldsymbol{O}(\boldsymbol{m})$ space.

Longest common subsequence is just edit distance for the two sequences...
$\boldsymbol{A}, \boldsymbol{B}$: input sequences
Σ : "alphabet" all the different values in \boldsymbol{A} and \boldsymbol{B}

$$
\begin{array}{ll}
\forall b, c \in \Sigma: b \neq c & \operatorname{COST}[b][c]=+\infty \\
\forall b \in \Sigma & \operatorname{COST}[b][b]=1
\end{array}
$$

1 : price of deletion of insertion of a single character

Length of longest common subsequence $=\boldsymbol{m}+\boldsymbol{n}-\operatorname{ed}(\boldsymbol{A}, \boldsymbol{B})$

Longest common subsequence is just edit distance for the two sequences...
$\boldsymbol{A}, \boldsymbol{B}$: input sequences
Σ : "alphabet" all the different values in \boldsymbol{A} and \boldsymbol{B}

$$
\begin{array}{ll}
\forall b, c \in \Sigma: b \neq c & \operatorname{COST}[b][c]=+\infty \\
\forall b \in \Sigma & \operatorname{COST}[b][b]=1
\end{array}
$$

1 : price of deletion of insertion of a single character

Length of longest common subsequence $=\boldsymbol{m}+\boldsymbol{n}-\mathbf{e d}(\boldsymbol{A}, \boldsymbol{B})$

THE END

(for now)

