
Algorithms & Models of Computation
CS/ECE 374, Fall 2020

Introduction to Dynamic
Programming
Lecture 13
Thursday, October 8, 2020

LATEXed: October 13, 2020 09:52

1 / 67



Algorithms & Models of Computation
CS/ECE 374, Fall 2020

13.1
Recursion and Memoization
FLNAME:13.1.0.0 ZZZ:13.1.0.0 Recursion and Memoization

2 / 67



Algorithms & Models of Computation
CS/ECE 374, Fall 2020

13.1.1
Fibonacci Numbers
FLNAME:13.1.1.0 ZZZ:13.1.1.0 Fibonacci Numbers

3 / 67



Fibonacci Numbers

Fibonacci numbers defined by recurrence:

F (n) = F (n − 1) + F (n − 2) and F (0) = 0,F (1) = 1.

These numbers have many interesting properties. A journal The Fibonacci Quarterly!

1 Binet’s formula: F (n) = ϕn−(1−ϕ)n√
5
≈ 1.618n−(−0.618)n√

5
≈ 1.618n

√
5

ϕ is the golden ratio (1 +
√

5)/2 ' 1.618.

2 limn→∞F (n + 1)/F (n) = ϕ

4 / 67



Fibonacci Numbers

Fibonacci numbers defined by recurrence:

F (n) = F (n − 1) + F (n − 2) and F (0) = 0,F (1) = 1.

These numbers have many interesting properties. A journal The Fibonacci Quarterly!

1 Binet’s formula: F (n) = ϕn−(1−ϕ)n√
5
≈ 1.618n−(−0.618)n√

5
≈ 1.618n

√
5

ϕ is the golden ratio (1 +
√

5)/2 ' 1.618.

2 limn→∞F (n + 1)/F (n) = ϕ

4 / 67



How many bits?

Consider the nth Fibonacci number F (n). Writing the number F (n) in base 2 requires

(A) Θ(n2) bits.
(B) Θ(n) bits.
(C) Θ(log n) bits.
(D) Θ(log log n) bits.

5 / 67



Recursive Algorithm for Fibonacci Numbers

Question: Given n, compute F (n).

Fib(n):
if (n = 0)

return 0

else if (n = 1)
return 1

else
return Fib(n − 1) + Fib(n − 2)

Running time? Let T (n) be the number of additions in Fib(n).

T (n) = T (n − 1) + T (n − 2) + 1 and T (0) = T (1) = 0

6 / 67



Recursive Algorithm for Fibonacci Numbers

Question: Given n, compute F (n).

Fib(n):
if (n = 0)

return 0

else if (n = 1)
return 1

else
return Fib(n − 1) + Fib(n − 2)

Running time? Let T (n) be the number of additions in Fib(n).

T (n) = T (n − 1) + T (n − 2) + 1 and T (0) = T (1) = 0

6 / 67



Recursive Algorithm for Fibonacci Numbers

Question: Given n, compute F (n).

Fib(n):
if (n = 0)

return 0

else if (n = 1)
return 1

else
return Fib(n − 1) + Fib(n − 2)

Running time? Let T (n) be the number of additions in Fib(n).

T (n) = T (n − 1) + T (n − 2) + 1 and T (0) = T (1) = 0

6 / 67



Recursive Algorithm for Fibonacci Numbers

Question: Given n, compute F (n).

Fib(n):
if (n = 0)

return 0

else if (n = 1)
return 1

else
return Fib(n − 1) + Fib(n − 2)

Running time? Let T (n) be the number of additions in Fib(n).

T (n) = T (n − 1) + T (n − 2) + 1 and T (0) = T (1) = 0

Roughly same as F (n): T (n) = Θ(ϕn).
The number of additions is exponential in n. Can we do better?

6 / 67



Recursion tree for the Recursive Fibonacci

10

7 / 67



Recursion tree for the Recursive Fibonacci

10 2

0 1

7 / 67



Recursion tree for the Recursive Fibonacci

10

1

3

2

0 1

2

0 1

7 / 67



Recursion tree for the Recursive Fibonacci

10

1

3

2

0 1

2

0 1

1

3

2

0 1

2

0 1

4

7 / 67



Recursion tree for the Recursive Fibonacci

1

3

2

0 1 1

3

2

0 1

2

0 1

4

1

3

2

0 1 1

3

2

0 1

2

0 1

4

5

7 / 67



Recursion tree for the Recursive Fibonacci

1

3

2

0 1

2

0 1

4

1

3

2

0 1 1

3

2

0 1

2

0 1

4

5

1

3

2

0 1

2

0 1

4

1

3

2

0 1 1

3

2

0 1

2

0 1

4

5

6

7 / 67



Recursion tree for the Recursive Fibonacci

1

3

2

0 1 1

3

2

0 1

2

0 1

4

5

1

3

2

0 1

2

0 1

4

1

3

2

0 1 1

3

2

0 1

2

0 1

4

5

6

1

3

2

0 1 1

3

2

0 1

2

0 1

4

5

1

3

2

0 1

2

0 1

4

1

3

2

0 1 1

3

2

0 1

2

0 1

4

5

6

7

7 / 67



An iterative algorithm for Fibonacci numbers

FibIter(n):
if (n = 0) then

return 0

if (n = 1) then
return 1

F [0] = 0
F [1] = 1
for i = 2 to n do

F [i ] = F [i − 1] + F [i − 2]
return F [n]

What is the running time of the algorithm? O(n) additions.

8 / 67



An iterative algorithm for Fibonacci numbers

FibIter(n):
if (n = 0) then

return 0

if (n = 1) then
return 1

F [0] = 0
F [1] = 1
for i = 2 to n do

F [i ] = F [i − 1] + F [i − 2]
return F [n]

What is the running time of the algorithm? O(n) additions.

8 / 67



An iterative algorithm for Fibonacci numbers

FibIter(n):
if (n = 0) then

return 0

if (n = 1) then
return 1

F [0] = 0
F [1] = 1
for i = 2 to n do

F [i ] = F [i − 1] + F [i − 2]
return F [n]

What is the running time of the algorithm? O(n) additions.

8 / 67



What is the difference?

1 Recursive algorithm is computing the same numbers again and again.

2 Iterative algorithm is storing computed values and building bottom up the final
value. Memoization.

Dynamic Programming:

Finding a recursion that can be effectively/efficiently memoized.

Leads to polynomial time algorithm if number of sub-problems is polynomial in input
size.

9 / 67



What is the difference?

1 Recursive algorithm is computing the same numbers again and again.

2 Iterative algorithm is storing computed values and building bottom up the final
value. Memoization.

Dynamic Programming:

Finding a recursion that can be effectively/efficiently memoized.

Leads to polynomial time algorithm if number of sub-problems is polynomial in input
size.

9 / 67



What is the difference?

1 Recursive algorithm is computing the same numbers again and again.

2 Iterative algorithm is storing computed values and building bottom up the final
value. Memoization.

Dynamic Programming:

Finding a recursion that can be effectively/efficiently memoized.

Leads to polynomial time algorithm if number of sub-problems is polynomial in input
size.

9 / 67



THE END
...

(for now)

10 / 67


