12.4 Longest Increasing Subsequence

Sequences

Definition

Sequence: an ordered list $a_{1}, a_{2}, \ldots, a_{n}$. Length of a sequence is number of elements in the list.

Definition

$a_{i}, \ldots, a_{i_{k}}$ is a subsequence of a_{1}, \ldots, a_{n} if $1 \leq i_{1}<i_{2}<\ldots<i_{k} \leq n$.

Definition

A sequence is increasing if $a_{1}<a_{2}<\ldots<a_{n}$. It is non-decreasing if $a_{1} \leq a_{2} \leq \ldots \leq a_{n}$. Similarly decreasing and non-increasing.

Sequences

Example...

Example

(1) Sequence: $6,3,5,2,7,8,1,9$
(2) Subsequence of above sequence: $5,2,1$
© Increasing sequence: $3,5,9,17,54$
(C) Decreasing sequence: $34,21,7,5,1$

- Increasing subsequence of the first sequence: $2,7,9$.

Longest Increasing Subsequence Problem

Input A sequence of numbers $a_{1}, a_{2}, \ldots, a_{n}$
Goal Find an increasing subsequence $a_{\boldsymbol{i}_{1}}, \boldsymbol{a}_{\boldsymbol{i}_{2}}, \ldots, \boldsymbol{a}_{\boldsymbol{i}_{\boldsymbol{k}}}$ of maximum length

```
Example
(1) Sequence: 6, 3, 5, 2, 7, 8, 1
(3) Increasing subsequences: 6, 7, 8 and 3, 5, 7, 8 and 2, 7 etc
(3) Longest increasing subsequence
```


Longest Increasing Subsequence Problem

Input A sequence of numbers $a_{1}, a_{2}, \ldots, a_{n}$
Goal Find an increasing subsequence $a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{k}}$ of maximum length

Example

(1) Sequence: $6,3,5,2,7,8,1$
(2) Increasing subsequences: 6, 7, 8 and $3,5,7,8$ and 2,7 etc
(0) Longest increasing subsequence: $3,5,7,8$

Naïve Enumeration

Assume $\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \ldots, \boldsymbol{a}_{\boldsymbol{n}}$ is contained in an array \boldsymbol{A}

```
algLISNaive(A[1..n]) :
    max = 0
    for each subsequence B of A do
        if B}\mathrm{ is increasing and }|B|>\operatorname{max}\mathrm{ then
                max = |B|
    Output max
```

Running time: $O\left(n 2^{n}\right)$.
2^{n} subsequences of a sequence of length n and $O(n)$ time to check if a given sequence
is increasing.

Naïve Enumeration

Assume $\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \ldots, \boldsymbol{a}_{\boldsymbol{n}}$ is contained in an array \boldsymbol{A}

```
algLISNaive(A[1..n]) :
    max = 0
    for each subsequence B of A do
        if B}\mathrm{ is increasing and }|B|>\operatorname{max}\mathrm{ then
        max = |B|
    Output max
```

Running time: $O\left(n 2^{n}\right)$
2^{n} subsequences of a sequence of length n and $O(n)$ time to check if a given sequence is increasing.

Naïve Enumeration

Assume $a_{1}, a_{2}, \ldots, a_{n}$ is contained in an array \boldsymbol{A}

```
algLISNaive(A[1..n]):
    max = 0
    for each subsequence B}\mathrm{ of }A\mathrm{ do
        if B}\mathrm{ is increasing and }|B|>\operatorname{max}\mathrm{ then
        max = |B|
    Output max
```

Running time: $O\left(n 2^{\boldsymbol{n}}\right)$.
2^{n} subsequences of a sequence of length \boldsymbol{n} and $\boldsymbol{O}(\boldsymbol{n})$ time to check if a given sequence is increasing.

Recursive Approach: Take 1

LIS: Longest increasing subsequence
Can we find a recursive algorithm for LIS?
$\operatorname{LIS}(\boldsymbol{A}[1 . . n]):$
© Case 1: Does not contain $A[n]$ in which case
$\operatorname{LIS}(A[1 . . n])=\operatorname{LIS}(A[1 . .(n-1)])$
(2) Case 2: contains $\boldsymbol{A}[n]$ in which case $\operatorname{LIS}(A[1 . . n])$ is not so clear

Observation

For second case we want to find a subsequence in $A[1 . .(n-1)]$ that is restricted to numbers less than $A[n]$. This suggests that a more general problem is LIS_smaller $(A[1 . . n], x)$ which gives the longest increasing subsequence in A where each number in the sequence is less than x.

Recursive Approach: Take 1

LIS: Longest increasing subsequence
Can we find a recursive algorithm for LIS?
$\operatorname{LIS}(\boldsymbol{A}[1 . . n]):$
(1) Case 1: Does not contain $\boldsymbol{A}[\boldsymbol{n}]$ in which case
$\operatorname{LIS}(\boldsymbol{A}[1 . . n])=\operatorname{LIS}(\boldsymbol{A}[1 . .(\boldsymbol{n}-1)])$
(2) Case 2: contains $\boldsymbol{A}[\boldsymbol{n}]$ in which case $\operatorname{LIS}(\boldsymbol{A}[1 . . \boldsymbol{n}])$ is not so clear

Observation

For second case we want to find a subsequence in $A[1 . .(n-1)]$ that is restricted to numbers less than $A[n]$. This suggests that a more general problem is LIS_smaller $(A[1 . . n], x)$ which gives the longest increasing subsequence in A where each number in the sequence is less than x.

Recursive Approach: Take 1

Can we find a recursive algorithm for LIS?
$\operatorname{LIS}(\boldsymbol{A}[1 . . n]):$
(1) Case 1: Does not contain $\boldsymbol{A}[\boldsymbol{n}]$ in which case

$$
\operatorname{LIS}(\boldsymbol{A}[1 . . n])=\operatorname{LIS}(\boldsymbol{A}[1 . .(\boldsymbol{n}-1)])
$$

(2) Case 2: contains $\boldsymbol{A}[\boldsymbol{n}]$ in which case $\operatorname{LIS}(\boldsymbol{A}[1 . . n])$ is not so clear.

Observation

For second case we want to find a subsequence in $A[1 . .(n-1)]$ that is restricted to numbers less than $A[n]$. This suggests that a more general problem is LIS_smaller $(A[1 . . n], x)$ which gives the longest increasing subsequence in A where each number in the sequence is less than x

Recursive Approach: Take 1

Can we find a recursive algorithm for LIS?

$\operatorname{LIS}(\boldsymbol{A}[1 . . n]):$

(1) Case 1: Does not contain $\boldsymbol{A}[\boldsymbol{n}]$ in which case $\operatorname{LIS}(\boldsymbol{A}[1 . . n])=\operatorname{LIS}(\boldsymbol{A}[1 . .(\boldsymbol{n}-1)])$
(2) Case 2: contains $\boldsymbol{A}[\boldsymbol{n}]$ in which case $\operatorname{LIS}(\boldsymbol{A}[1 . . \boldsymbol{n}])$ is not so clear.

Observation

For second case we want to find a subsequence in $\mathbf{A}[1 . .(\boldsymbol{n}-1)]$ that is restricted to numbers less than $\boldsymbol{A}[\boldsymbol{n}]$. This suggests that a more general problem is LIS_smaller $(\boldsymbol{A}[1 . . n], x)$ which gives the longest increasing subsequence in \boldsymbol{A} where each number in the sequence is less than x.

Recursive Approach

LIS_smaller $(\boldsymbol{A}[1 . . n], x)$: length of longest increasing subsequence in $\boldsymbol{A}[1 . . n]$ with all numbers in subsequence less than x

```
LIS_smaller(A[1..n],x):
    if (n=0) then return 0
    m}=\mathrm{ LIS_smaller(A[1..(n-1)],x)
    if (A[n]<x) then
        m}=\boldsymbol{max}(\boldsymbol{m},1+\operatorname{LIS_smaller}(\boldsymbol{A}[1..(\boldsymbol{n}-1)],\boldsymbol{A}[\boldsymbol{n}])
    Output m
```

$\operatorname{LIS}(A[1 . . n]):$
return LIS_smaller ($\boldsymbol{A}[1 . . n], \infty)$

Example

Sequence: $\boldsymbol{A}[1 . .7]=6,3,5,2,7,8,1$

THE END

(for now)

