11.4.2 Quick select

QuickSelect

Divide and Conquer Approach

(1) Pick a pivot element a from \boldsymbol{A}
(2) Partition \boldsymbol{A} based on a.
$\boldsymbol{A}_{\text {less }}=\{x \in A \mid x \leq a\}$ and $\boldsymbol{A}_{\text {greater }}=\{x \in A \mid x>a\}$
(0) $\left|\boldsymbol{A}_{\text {less }}\right|=\boldsymbol{j}$: return a
(1) $\left|\boldsymbol{A}_{\text {less }}\right|>\boldsymbol{j}$: recursively find \boldsymbol{j} th smallest element in $\boldsymbol{A}_{\text {less }}$
(0) $\left|\boldsymbol{A}_{\text {less }}\right|<\boldsymbol{j}$: recursively find \boldsymbol{k} th smallest element in $\boldsymbol{A}_{\text {greater }}$ where $\boldsymbol{k}=\boldsymbol{j}-\left|\boldsymbol{A}_{\text {less }}\right|$.

Example

Time Analysis

(1) Partitioning step: $\boldsymbol{O}(\boldsymbol{n})$ time to scan \boldsymbol{A}
(2) How do we choose pivot? Recursive running time?

Suppose we always choose pivot to be A[1]

Say \boldsymbol{A} is sorted in increasing order and $\boldsymbol{j}=\boldsymbol{n}$
Exercise: show that algorithm takes $\Omega\left(\boldsymbol{n}^{2}\right)$ time

Time Analysis

(1) Partitioning step: $\boldsymbol{O}(\boldsymbol{n})$ time to scan \boldsymbol{A}
(2) How do we choose pivot? Recursive running time?

Suppose we always choose pivot to be $\boldsymbol{A}[\mathbf{1}]$.

Say \boldsymbol{A} is sorted in increasing order and $\boldsymbol{j}=\boldsymbol{n}$.
Exercise: show that algorithm takes $\Omega\left(\boldsymbol{n}^{2}\right)$ time

Time Analysis

(1) Partitioning step: $\boldsymbol{O}(\boldsymbol{n})$ time to scan \boldsymbol{A}
(2) How do we choose pivot? Recursive running time?

Suppose we always choose pivot to be $\boldsymbol{A}[\mathbf{1}]$.
Say \boldsymbol{A} is sorted in increasing order and $\boldsymbol{j}=\boldsymbol{n}$. Exercise: show that algorithm takes $\Omega\left(\boldsymbol{n}^{2}\right)$ time

A Better Pivot

Suppose pivot is the ℓ th smallest element where $\boldsymbol{n} / \mathbf{4} \leq \boldsymbol{\ell} \leq \mathbf{3 n} / \mathbf{4}$.
That is pivot is approximately in the middle of \boldsymbol{A}
Then $n / 4 \leq\left|\overline{\boldsymbol{A}_{\text {less }}}\right| \leq \mathbf{3 n / 4}$ and $\boldsymbol{n} / 4 \leq\left|\boldsymbol{A}_{\text {greater }}\right| \leq \mathbf{3 n} / 4$. If we apply recursion, $T(n) \leq T(3 n / 4)+O(n)$

```
Implies }\boldsymbol{T}(\boldsymbol{n})=\boldsymbol{O}(\boldsymbol{n})
How do we find such a pivot? Randomly? In fact works!
Analysis a little bit later
```

Can we choose pivot deterministically?

A Better Pivot

Suppose pivot is the $\boldsymbol{\ell}$ th smallest element where $\boldsymbol{n} / \mathbf{4} \leq \boldsymbol{\ell} \leq \mathbf{3 n} / \mathbf{4}$.
That is pivot is approximately in the middle of \boldsymbol{A}
Then $n / 4 \leq\left|\overline{\boldsymbol{A}_{\text {less }}}\right| \leq \mathbf{3 n / 4}$ and $\boldsymbol{n} / 4 \leq\left|\boldsymbol{A}_{\text {greater }}\right| \leq \mathbf{3 n} / 4$. If we apply recursion,

$$
T(n) \leq T(3 n / 4)+O(n)
$$

Implies $\boldsymbol{T}(\boldsymbol{n})=\boldsymbol{O}(\boldsymbol{n})$!
How do we find such a pivot? Randomly? In fact works!
Analysis a little bit later

Can we choose pivot deterministically?

A Better Pivot

Suppose pivot is the $\boldsymbol{\ell}$ th smallest element where $\boldsymbol{n} / \mathbf{4} \leq \boldsymbol{\ell} \leq \mathbf{3 n} / \mathbf{4}$.
That is pivot is approximately in the middle of \boldsymbol{A}
Then $\boldsymbol{n} / \mathbf{4} \leq\left|\overline{\boldsymbol{A}_{\text {less }}}\right| \leq \mathbf{3 n / 4}$ and $\boldsymbol{n} / \mathbf{4} \leq\left|\boldsymbol{A}_{\text {greater }}\right| \leq \mathbf{3 n} / \mathbf{4}$. If we apply recursion,

$$
T(n) \leq T(3 n / 4)+O(n)
$$

Implies $\boldsymbol{T}(\boldsymbol{n})=\boldsymbol{O}(\boldsymbol{n})$!
How do we find such a pivot? Randomly? In fact works!
Analysis a little bit later.

Can we choose pivot deterministically?

A Better Pivot

Suppose pivot is the ℓ th smallest element where $\boldsymbol{n} / \mathbf{4} \leq \boldsymbol{\ell} \leq \mathbf{3 n} / \mathbf{4}$.
That is pivot is approximately in the middle of \boldsymbol{A}
Then $\boldsymbol{n} / \mathbf{4} \leq\left|\overline{\boldsymbol{A}_{\text {less }}}\right| \leq \mathbf{3 n / 4}$ and $\boldsymbol{n} / \mathbf{4} \leq\left|\boldsymbol{A}_{\text {greater }}\right| \leq \mathbf{3 n} / \mathbf{4}$. If we apply recursion,

$$
T(n) \leq T(3 n / 4)+O(n)
$$

Implies $\boldsymbol{T}(\boldsymbol{n})=\boldsymbol{O}(\boldsymbol{n})$!
How do we find such a pivot? Randomly? In fact works!
Analysis a little bit later.

Can we choose pivot deterministically?

A Better Pivot

Suppose pivot is the ℓ th smallest element where $n / 4 \leq \ell \leq 3 n / 4$.
That is pivot is approximately in the middle of \boldsymbol{A}
Then $\boldsymbol{n} / 4 \leq\left|\overline{\boldsymbol{A}_{\text {less }}}\right| \leq \mathbf{3 n / 4}$ and $\boldsymbol{n} / 4 \leq\left|\boldsymbol{A}_{\text {greater }}\right| \leq \mathbf{3 n} / \mathbf{4}$. If we apply recursion,

$$
T(n) \leq T(3 n / 4)+O(n)
$$

Implies $\boldsymbol{T}(\boldsymbol{n})=\boldsymbol{O}(\boldsymbol{n})$!
How do we find such a pivot? Randomly? In fact works! Analysis a little bit later.

A Better Pivot

Suppose pivot is the ℓ th smallest element where $n / 4 \leq \ell \leq \mathbf{3 n} / 4$.
That is pivot is approximately in the middle of \boldsymbol{A}
Then $\boldsymbol{n} / 4 \leq\left|\overline{\boldsymbol{A}_{\text {less }}}\right| \leq \mathbf{3 n / 4}$ and $\boldsymbol{n} / 4 \leq\left|\boldsymbol{A}_{\text {greater }}\right| \leq \mathbf{3 n} / \mathbf{4}$. If we apply recursion,

$$
T(n) \leq T(3 n / 4)+O(n)
$$

Implies $\boldsymbol{T}(\boldsymbol{n})=\boldsymbol{O}(\boldsymbol{n})$!
How do we find such a pivot? Randomly? In fact works! Analysis a little bit later.

Can we choose pivot deterministically?

THE END

(for now)

