11.3.1

Solving the recurrences for fast multiplication

Analyzing the Recurrences

(1) Basic divide and conquer: $\boldsymbol{T}(n)=\mathbf{4 T}(n / 2)+\boldsymbol{O}(n), T(1)=1$. Claim: $\boldsymbol{T}(\boldsymbol{n})=\Theta\left(\boldsymbol{n}^{2}\right)$.
(2) Saving a multiplication: $\boldsymbol{T}(n)=3 T(n / 2)+O(n), T(1)=1$. Claim: $\boldsymbol{T}(\boldsymbol{n})=\Theta\left(\boldsymbol{n}^{1+\log 1.5}\right)$

Use recursion tree method

(1) In both cases, depth of recursion $\boldsymbol{L}=\log \boldsymbol{n}$.
(2) Work at depth \boldsymbol{i} is $4^{\boldsymbol{i}} \boldsymbol{n} / \mathbf{2}^{\boldsymbol{i}}$ and $\mathbf{3}^{\boldsymbol{i}} \boldsymbol{n} / \mathbf{2}^{\boldsymbol{i}}$ respectively: number of children at depth \boldsymbol{i} times the work at each child

- Total work is therefore $n \sum_{i=0}^{L} 2^{i}$ and $n \sum_{i=0}^{L}(3 / 2)^{i}$ respectively.

Analyzing the Recurrences

(1) Basic divide and conquer: $\boldsymbol{T}(n)=\mathbf{4 T}(n / 2)+\boldsymbol{O}(n), \boldsymbol{T}(1)=1$. Claim: $\boldsymbol{T}(\boldsymbol{n})=\Theta\left(\boldsymbol{n}^{2}\right)$.
(2) Saving a multiplication: $\boldsymbol{T}(n)=3 T(n / 2)+O(n), T(1)=1$. Claim: $\boldsymbol{T}(\boldsymbol{n})=\Theta\left(\boldsymbol{n}^{1+\log 1.5}\right)$
Use recursion tree method:
(1) In both cases, depth of recursion $\boldsymbol{L}=\log \boldsymbol{n}$.
(2) Work at depth \boldsymbol{i} is $\mathbf{4}^{\boldsymbol{i}} \boldsymbol{n} / \mathbf{2}^{\boldsymbol{i}}$ and $\mathbf{3}^{\boldsymbol{i}} \boldsymbol{n} / \mathbf{2}^{\boldsymbol{i}}$ respectively: number of children at depth \boldsymbol{i} times the work at each child
(3) Total work is therefore $n \sum_{i=0}^{L} 2^{i}$ and $n \sum_{i=0}^{L}(3 / 2)^{i}$ respectively.

Analyzing the recurrence with four recursive calls

$$
T(n)=4 T(n / 2)+O(n), T(1)=1
$$

Analyzing the recurrence with three recursive calls

$$
T(n)=3 T(n / 2)+O(n), T(1)=1
$$

Analyzing the recurrence with two recursive calls

$$
T(n)=2 T(n / 2)+O(n), T(1)=1
$$

THE END

(for now)

