10.8
 Binary Search

Binary Search in Sorted Arrays

Input Sorted array \boldsymbol{A} of \boldsymbol{n} numbers and number \boldsymbol{x}
Goal Is \boldsymbol{x} in \boldsymbol{A} ?

```
BinarySearch(A[a..b], x)
    if (b-a<0) return NO
    mid}=\boldsymbol{A}[\lfloor(a+b)/2\rfloor
    if (x=mid) return YES
if ( }x<m\mathrm{ mid)
            return BinarySearch (A[a.. \lfloor(a+b)/2\rfloor-1], x)
        else
            return BinarySearch (A[L(a+b)/2 \ +1..b],x)
```

Analysis: $\boldsymbol{T}(n)=\boldsymbol{T}(\lfloor n / 2\rfloor)+O(1) . T(n)=O(\log n)$
Observation: After \boldsymbol{k} steps, size of array left is $n / 2^{k}$

Binary Search in Sorted Arrays

Input Sorted array \boldsymbol{A} of \boldsymbol{n} numbers and number \boldsymbol{x}
Goal Is \boldsymbol{x} in \boldsymbol{A} ?

```
BinarySearch (A[a..b], x):
    if \((\boldsymbol{b}-\boldsymbol{a}<0)\) return NO
    \(\boldsymbol{m i d}=\boldsymbol{A}[\lfloor(\boldsymbol{a}+\boldsymbol{b}) / 2\rfloor]\)
    if ( \(x=\) mid) return YES
    if \((x<\) mid \()\)
            return BinarySearch \((A[a . .\lfloor(a+b) / 2\rfloor-1], x)\)
        else
            return BinarySearch \((A[L(a+b) / 2\rfloor+1 . . b], x)\)
```


Binary Search in Sorted Arrays

Input Sorted array \boldsymbol{A} of \boldsymbol{n} numbers and number \boldsymbol{x}
Goal Is \boldsymbol{x} in \boldsymbol{A} ?

```
BinarySearch (A[a..b], x):
    if \((\boldsymbol{b}-\boldsymbol{a}<0)\) return NO
    \(\boldsymbol{m i d}=\boldsymbol{A}[\lfloor(\boldsymbol{a}+\boldsymbol{b}) / 2\rfloor]\)
    if ( \(x=\) mid) return YES
    if \((x<\) mid \()\)
            return BinarySearch \((A[a . .\lfloor(a+b) / 2\rfloor-1], x)\)
        else
            return BinarySearch \((A[L(a+b) / 2\rfloor+1 . . b], x)\)
```

Analysis: $\boldsymbol{T}(n)=\boldsymbol{T}(\lfloor n / 2\rfloor)+\boldsymbol{O}(\mathbf{1}) . \boldsymbol{T}(n)=\boldsymbol{O}(\log n)$. Observation: After \boldsymbol{k} steps, size of array left is $n / \mathbf{2}^{\boldsymbol{k}}$

Another common use of binary search

(1) Optimization version: find solution of best (say minimum) value
(2) Decision version: is there a solution of value at most a given value \boldsymbol{v} ?

Reduce optimization to decision (may be easier to think about):
(1) Given instance I compute upper bound $\boldsymbol{U}(\boldsymbol{I})$ on best value
(2) Compute lower bound $\boldsymbol{L}(\boldsymbol{I})$ on best value
© Do binary search on interval $[L(I), U(I)]$ using decision version as black box
(9) $\boldsymbol{O}(\log (\boldsymbol{U}(\boldsymbol{I})-\boldsymbol{L}(\boldsymbol{I})))$ calls to decision version if $\boldsymbol{U}(\boldsymbol{I}), \boldsymbol{L}(\boldsymbol{I})$ are integers

Another common use of binary search

(1) Optimization version: find solution of best (say minimum) value
(2) Decision version: is there a solution of value at most a given value \boldsymbol{v} ?

Reduce optimization to decision (may be easier to think about):
(1) Given instance \boldsymbol{I} compute upper bound $\boldsymbol{U}(\boldsymbol{I})$ on best value
(2) Compute lower bound $\boldsymbol{L}(\boldsymbol{I})$ on best value
(3) Do binary search on interval $[\boldsymbol{L}(\boldsymbol{I}), \boldsymbol{U}(\boldsymbol{I})]$ using decision version as black box
(9) $\boldsymbol{O}(\log (\boldsymbol{U}(\boldsymbol{I})-\boldsymbol{L}(\boldsymbol{I}))$ calls to decision version if $\boldsymbol{U}(\boldsymbol{I}), \boldsymbol{L}(\boldsymbol{I})$ are integers

Example

(1) Problem: shortest paths in a graph.
(2) Decision version: given \boldsymbol{G} with non-negative integer edge lengths, nodes $\boldsymbol{s}, \boldsymbol{t}$ and bound \boldsymbol{B}, is there an \boldsymbol{s} - \boldsymbol{t} path in \boldsymbol{G} of length at most \boldsymbol{B} ?
(3) Optimization version: find the length of a shortest path between \boldsymbol{s} and \boldsymbol{t} in \boldsymbol{G}. Question: given a black box algorithm for the decision version, can we obtain an algorithm for the optimization version?

Example continued

Question: given a black box algorithm for the decision version, can we obtain an algorithm for the optimization version?
(1) Let \boldsymbol{U} be maximum edge length in \boldsymbol{G}.
(2) Minimum edge length is \boldsymbol{L}.
(\boldsymbol{s} - \boldsymbol{t} shortest path length is at most $(\boldsymbol{n}-\mathbf{1}) \boldsymbol{U}$ and at least \boldsymbol{L}.
(1) Apply binary search on the interval $[\boldsymbol{L},(\boldsymbol{n}-\mathbf{1}) \mathbf{U}]$ via the algorithm for the decision problem.
(0) $\boldsymbol{O}(\log ((\boldsymbol{n}-\mathbf{1}) \boldsymbol{U}-\boldsymbol{L}))$ calls to the decision problem algorithm sufficient. Polynomial in input size.

THE END

(for now)

