
Algorithms & Models of Computation
CS/ECE 374, Fall 2020

10.3
Reductions
FLNAME:10.3.0.0

Har-Peled (UIUC) CS374 22 Fall 2020 22 / 102



Reduction

Reducing problem A to problem B:
1 Algorithm for A uses algorithm for B as a black box

Har-Peled (UIUC) CS374 23 Fall 2020 23 / 102



Reduction

Reducing problem A to problem B:
1 Algorithm for A uses algorithm for B as a black box

Q: How do you hunt a blue elephant?
A: With a blue elephant gun.

Har-Peled (UIUC) CS374 23 Fall 2020 23 / 102



Reduction

Reducing problem A to problem B:
1 Algorithm for A uses algorithm for B as a black box

Q: How do you hunt a blue elephant?
A: With a blue elephant gun.

Q: How do you hunt a red elephant?
A: Hold his trunk shut until it turns blue, and then shoot it with the blue elephant gun.

Har-Peled (UIUC) CS374 23 Fall 2020 23 / 102



Reduction

Reducing problem A to problem B:
1 Algorithm for A uses algorithm for B as a black box

Q: How do you hunt a blue elephant?
A: With a blue elephant gun.

Q: How do you hunt a red elephant?
A: Hold his trunk shut until it turns blue, and then shoot it with the blue elephant gun.

Q: How do you shoot a white elephant?
A: Embarrass it till it becomes red. Now use your algorithm for hunting red elephants.

Har-Peled (UIUC) CS374 23 Fall 2020 23 / 102



UNIQUENESS: Distinct Elements Problem

Problem Given an array A of n integers, are there any duplicates in A?

Naive algorithm:
DistinctElements(A[1..n])

for i = 1 to n − 1 do
for j = i + 1 to n do

if (A[i ] = A[j ])
return YES

return NO

Running time: O(n2)

Har-Peled (UIUC) CS374 24 Fall 2020 24 / 102



UNIQUENESS: Distinct Elements Problem

Problem Given an array A of n integers, are there any duplicates in A?

Naive algorithm:
DistinctElements(A[1..n])

for i = 1 to n − 1 do
for j = i + 1 to n do

if (A[i ] = A[j ])
return YES

return NO

Running time: O(n2)

Har-Peled (UIUC) CS374 24 Fall 2020 24 / 102



UNIQUENESS: Distinct Elements Problem

Problem Given an array A of n integers, are there any duplicates in A?

Naive algorithm:
DistinctElements(A[1..n])

for i = 1 to n − 1 do
for j = i + 1 to n do

if (A[i ] = A[j ])
return YES

return NO

Running time: O(n2)

Har-Peled (UIUC) CS374 24 Fall 2020 24 / 102



UNIQUENESS: Distinct Elements Problem

Problem Given an array A of n integers, are there any duplicates in A?

Naive algorithm:
DistinctElements(A[1..n])

for i = 1 to n − 1 do
for j = i + 1 to n do

if (A[i ] = A[j ])
return YES

return NO

Running time: O(n2)

Har-Peled (UIUC) CS374 24 Fall 2020 24 / 102



Reduction to Sorting

DistinctElements(A[1..n])
Sort A
for i = 1 to n − 1 do

if (A[i ] = A[i + 1]) then
return YES

return NO

Running time: O(n) plus time to sort an array of n numbers

Important point: algorithm uses sorting as a black box

Advantage of naive algorithm: works for objects that cannot be “sorted”. Can also
consider hashing but outside scope of current course.

Har-Peled (UIUC) CS374 25 Fall 2020 25 / 102



Reduction to Sorting

DistinctElements(A[1..n])
Sort A
for i = 1 to n − 1 do

if (A[i ] = A[i + 1]) then
return YES

return NO

Running time: O(n) plus time to sort an array of n numbers

Important point: algorithm uses sorting as a black box

Advantage of naive algorithm: works for objects that cannot be “sorted”. Can also
consider hashing but outside scope of current course.

Har-Peled (UIUC) CS374 25 Fall 2020 25 / 102



Reduction to Sorting

DistinctElements(A[1..n])
Sort A
for i = 1 to n − 1 do

if (A[i ] = A[i + 1]) then
return YES

return NO

Running time: O(n) plus time to sort an array of n numbers

Important point: algorithm uses sorting as a black box

Advantage of naive algorithm: works for objects that cannot be “sorted”. Can also
consider hashing but outside scope of current course.

Har-Peled (UIUC) CS374 25 Fall 2020 25 / 102



Two sides of Reductions

Suppose problem A reduces to problem B
1 Positive direction: Algorithm for B implies an algorithm for A
2 Negative direction: Suppose there is no “efficient” algorithm for A then it implies

no efficient algorithm for B (technical condition for reduction time necessary for
this)

Example: Distinct Elements reduces to Sorting in O(n) time
1 An O(n log n) time algorithm for Sorting implies an O(n log n) time algorithm for

Distinct Elements problem.
2 If there is no o(n log n) time algorithm for Distinct Elements problem then there is

no o(n log n) time algorithm for Sorting.

Har-Peled (UIUC) CS374 26 Fall 2020 26 / 102



Two sides of Reductions

Suppose problem A reduces to problem B
1 Positive direction: Algorithm for B implies an algorithm for A
2 Negative direction: Suppose there is no “efficient” algorithm for A then it implies

no efficient algorithm for B (technical condition for reduction time necessary for
this)

Example: Distinct Elements reduces to Sorting in O(n) time
1 An O(n log n) time algorithm for Sorting implies an O(n log n) time algorithm for

Distinct Elements problem.
2 If there is no o(n log n) time algorithm for Distinct Elements problem then there is

no o(n log n) time algorithm for Sorting.

Har-Peled (UIUC) CS374 26 Fall 2020 26 / 102



THE END
...

(for now)

Har-Peled (UIUC) CS374 27 Fall 2020 27 / 102


