10.3

Reductions

Reduction

Reducing problem \boldsymbol{A} to problem \boldsymbol{B} :

(1) Algorithm for \boldsymbol{A} uses algorithm for \boldsymbol{B} as a black box

Reduction

Reducing problem \boldsymbol{A} to problem \boldsymbol{B} :
(1) Algorithm for \boldsymbol{A} uses algorithm for \boldsymbol{B} as a black box

Q: How do you hunt a blue elephant?
A: With a blue elephant gun.

Reduction

Reducing problem \boldsymbol{A} to problem \boldsymbol{B} :
(1) Algorithm for \boldsymbol{A} uses algorithm for \boldsymbol{B} as a black box

Q: How do you hunt a blue elephant?
A: With a blue elephant gun.
Q: How do you hunt a red elephant?
A: Hold his trunk shut until it turns blue, and then shoot it with the blue elephant gun.

Reduction

Reducing problem \boldsymbol{A} to problem \boldsymbol{B} :
(1) Algorithm for \boldsymbol{A} uses algorithm for \boldsymbol{B} as a black box

Q: How do you hunt a blue elephant?
A: With a blue elephant gun.
Q: How do you hunt a red elephant?
A: Hold his trunk shut until it turns blue, and then shoot it with the blue elephant gun.
Q: How do you shoot a white elephant?
A: Embarrass it till it becomes red. Now use your algorithm for hunting red elephants.

UNIQUENESS: Distinct Elements Problem

Problem Given an array \boldsymbol{A} of \boldsymbol{n} integers, are there any duplicates in \boldsymbol{A} ?

Naive algorithm

return NO
Running time: $O\left(n^{2}\right)$

UNIQUENESS: Distinct Elements Problem

Problem Given an array \boldsymbol{A} of \boldsymbol{n} integers, are there any duplicates in \boldsymbol{A} ?

Naive algorithm:

$$
\begin{gathered}
\text { DistinctElements }(\mathrm{A}[1 \ldots \mathrm{n}]) \\
\text { for } \boldsymbol{i}=\mathbf{1} \text { to } \boldsymbol{n}-\mathbf{1} \text { do } \\
\text { for } \boldsymbol{j}=\boldsymbol{i}+\mathbf{1} \text { to } \boldsymbol{n} \text { do } \\
\text { if }(\boldsymbol{A}[\boldsymbol{i}]=\boldsymbol{A}[\boldsymbol{j}]) \\
\text { return YES } \\
\text { return NO }
\end{gathered}
$$

Running time: $O\left(n^{2}\right)$

UNIQUENESS: Distinct Elements Problem

Problem Given an array \boldsymbol{A} of \boldsymbol{n} integers, are there any duplicates in \boldsymbol{A} ?

Naive algorithm:

$$
\begin{gathered}
\text { Distinct Elements }(A[1 \ldots \mathrm{n}]) \\
\text { for } \boldsymbol{i}=\mathbf{1} \text { to } \boldsymbol{n}-\mathbf{1} \text { do } \\
\text { for } \boldsymbol{j}=\boldsymbol{i}+\mathbf{1} \text { to } \boldsymbol{n} \text { do } \\
\text { if }(\boldsymbol{A}[\boldsymbol{i}]=\boldsymbol{A}[\boldsymbol{j}]) \\
\text { return YES } \\
\text { return NO }
\end{gathered}
$$

Running time:

\square

UNIQUENESS: Distinct Elements Problem

Problem Given an array \boldsymbol{A} of \boldsymbol{n} integers, are there any duplicates in \boldsymbol{A} ?

Naive algorithm:

$$
\begin{aligned}
& \text { DistinctElements }(A[1 \ldots \mathrm{n}]) \\
& \text { for } \boldsymbol{i}=\mathbf{1} \text { to } \boldsymbol{n}-\mathbf{1} \text { do } \\
& \text { for } \boldsymbol{j}=\boldsymbol{i}+\mathbf{1} \text { to } \boldsymbol{n} \text { do } \\
& \text { if }(\boldsymbol{A}[\boldsymbol{i}]=\boldsymbol{A}[\boldsymbol{j}]) \\
& \text { return YES } \\
& \text { return NO }
\end{aligned}
$$

Running time: $O\left(n^{2}\right)$

Reduction to Sorting

$$
\begin{aligned}
& \text { DistinctElements (A }[1 \ldots \mathrm{n}]) \\
& \text { Sort } \boldsymbol{A} \\
& \text { for } \boldsymbol{i}=\mathbf{1} \text { to } \boldsymbol{n}-\mathbf{1} \text { do } \\
& \text { if }(\boldsymbol{A}[i]=\boldsymbol{A}[\boldsymbol{i}+\mathbf{1}]) \text { then } \\
& \text { return YES } \\
& \text { return NO }
\end{aligned}
$$

Running time: $\mathbf{O (n)}$ plus time to sort an array of n numbers

Important point: algorithm uses sorting as a black box

Advantage of naive algorithm: works for objects that cannot be "sorted". Can also consider hashing but outside scope of current course

Reduction to Sorting

$$
\begin{aligned}
& \text { DistinctElements }(\mathrm{A}[1 \ldots \mathrm{n}]) \\
& \text { Sort } \boldsymbol{A} \\
& \text { for } \boldsymbol{i}=\mathbf{1} \text { to } \boldsymbol{n}-\mathbf{1} \text { do } \\
& \text { if }(\boldsymbol{A}[\boldsymbol{i}]=\boldsymbol{A}[\boldsymbol{i}+1]) \text { then } \\
& \text { return YES } \\
& \text { return NO }
\end{aligned}
$$

Running time: $\boldsymbol{O}(\boldsymbol{n})$ plus time to sort an array of \boldsymbol{n} numbers
Important point: algorithm uses sorting as a black box
Advantage of naive algorithm: works for objects that cannot be "sorted". Can also consider hashing but outside scope of current course.

Reduction to Sorting

```
DistinctElements(A[1. n])
    Sort A
    for i=1 to n-1 do
        if (A[i] =A[i+1]) then
        return YES
    return NO
```

Running time: $\boldsymbol{O}(\boldsymbol{n})$ plus time to sort an array of \boldsymbol{n} numbers
Important point: algorithm uses sorting as a black box
Advantage of naive algorithm: works for objects that cannot be "sorted". Can also consider hashing but outside scope of current course.

Two sides of Reductions

Suppose problem \boldsymbol{A} reduces to problem \boldsymbol{B}
(1) Positive direction: Algorithm for \boldsymbol{B} implies an algorithm for \boldsymbol{A}
(2) Negative direction: Suppose there is no "efficient" algorithm for \boldsymbol{A} then it implies no efficient algorithm for \boldsymbol{B} (technical condition for reduction time necessary for this)

Example: Distinct Elements reduces to Sorting in $\mathbf{O}(n)$ time
(1) An $\boldsymbol{O}(\boldsymbol{n} \log \boldsymbol{n})$ time algorithm for Sorting implies an $\boldsymbol{O}(\boldsymbol{n} \log n)$ time algorithm for Distinct Elements problem
(2) If there is no $\boldsymbol{o}(\boldsymbol{n} \log \boldsymbol{n})$ time algorithm for Distinct Elements problem then there is no $\boldsymbol{o}(\boldsymbol{n} \log \boldsymbol{n})$ time algorithm for Sorting.

Two sides of Reductions

Suppose problem \boldsymbol{A} reduces to problem \boldsymbol{B}
(1) Positive direction: Algorithm for \boldsymbol{B} implies an algorithm for \boldsymbol{A}
(2) Negative direction: Suppose there is no "efficient" algorithm for \boldsymbol{A} then it implies no efficient algorithm for \boldsymbol{B} (technical condition for reduction time necessary for this)

Example: Distinct Elements reduces to Sorting in $\boldsymbol{O}(\boldsymbol{n})$ time
(1) An $\boldsymbol{O}(\boldsymbol{n} \log \boldsymbol{n})$ time algorithm for Sorting implies an $\boldsymbol{O}(\boldsymbol{n} \log \boldsymbol{n})$ time algorithm for Distinct Elements problem.
(2) If there is no $\boldsymbol{O}(\boldsymbol{n} \log \boldsymbol{n})$ time algorithm for Distinct Elements problem then there is no $\boldsymbol{O}(\boldsymbol{n} \log \boldsymbol{n})$ time algorithm for Sorting.

THE END

(for now)

