9.5
 Turing complete

Equivalent to a program

Definition

A system is Turing complete if one can simulate a Turing machine using it.
(1) Programming languages (yey!)
(2) $\mathrm{C}++$ templates system (boo)
(3) John Conway's game of life
© Many games (Minesweeper)
© Post's correspondence problem

Equivalent to a program

Definition

A system is Turing complete if one can simulate a Turing machine using it.
(1) Programming languages (yey!).
(2) C ++ templates system (boo).
(0) John Conway's game of life.

- Many games (Minesweeper).
- Post's correspondence problem.

Post's correspondence problem

S : set of domino tiles.
abb
bc
domino piece a string at the top and a string at the bottom.
Example:

$$
S=\left\{\begin{array}{c}
\hline b \\
\hline c a \\
\hline a b \\
\hline a b \\
\hline a \\
\hline a \\
\hline a b c \\
\hline a
\end{array}\right\} .
$$

Matching dominos

$$
S=\left\{\begin{array}{c}
\hline b \\
\hline c a \\
\left.\left.\hline \frac{a}{a b}, \begin{array}{|c|}
\hline c a \\
\hline a \\
\hline a b c \\
\hline c
\end{array}\right\} . . . \begin{array}{c}
a b c
\end{array} . . \begin{array}{c}
\\
\hline
\end{array}\right] \\
\hline
\end{array}\right.
$$

match for S : ordered list of dominos from S, such that top strings make same string as bottom strings. Example:

(1) Can use same domino more than once
(2) Do not have to use all pieces of S

Matching dominos

$$
S=\left\{\begin{array}{c}
\hline b \\
\hline c a \\
\left.\left.\hline \frac{a}{a b}, \begin{array}{|c|}
\hline c a \\
\hline a \\
\hline a b c \\
\hline c
\end{array}\right\} . . . \begin{array}{c}
a b c
\end{array} . . \begin{array}{c}
\\
\hline
\end{array}\right] \\
\hline
\end{array}\right.
$$

match for S : ordered list of dominos from S, such that top strings make same string as bottom strings. Example:

a	b	$c a$	a	$a b c$
$a b$	$c a$	a	$a b$	c

(1) Can use same domino more than once.
(2) Do not have to use all pieces of \boldsymbol{S}.

Matching dominos

$$
S=\left\{\begin{array}{c}
\hline b \\
\hline c a \\
\left.\left.\hline \frac{a}{a b}, \begin{array}{|c|}
\hline c a \\
\hline a \\
\hline a b c \\
\hline c
\end{array}\right\} . . . \begin{array}{c}
a b c
\end{array} . . \begin{array}{c}
\\
\hline
\end{array}\right] \\
\hline
\end{array}\right.
$$

match for S : ordered list of dominos from S, such that top strings make same string as bottom strings. Example:

a	b	$c a$	a	$a b c$
$a b$	$c a$	a	$a b$	c

(1) Can use same domino more than once.
(2) Do not have to use all pieces of \boldsymbol{S}.

Post's Correspondence Problem

Post's Correspondence Problem (PCP) is deciding whether a set of dominos has a match or not. modified Post's Correspondence Problem (MPCP): PCP + a special tile. Matches for MPCP have to start with the special tile.

Theorem

The MPCP problem is undecidable.

THE END

(for now)

