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FLNAME:5.2.0

Har-Peled (UIUC) CS374 26 Fall 2020 26 / 42



Regular Languages

Regular languages have three different characterizations

Inductive definition via base cases and closure under union, concatenation and
Kleene star

Languages accepted by DFAs

Languages accepted by NFAs

Regular language closed under many operations:

union, concatenation, Kleene star via inductive definition or NFAs

complement, union, intersection via DFAs

homomorphism, inverse homomorphism, reverse, . . .

Different representations allow for flexibility in proofs
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Example: PREFIX

Let L be a language over Σ.

Definition
PREFIX(L) = {w | wx ∈ L, x ∈ Σ∗}

Theorem
If L is regular then PREFIX(L) is regular.

Let M = (Q,Σ, δ, s,A) be a DFA that recognizes L
X = {q ∈ Q | s can reach q in M} Y = {q ∈ Q | q can reach some state in A}
Z = X ∩ Y
Create new DFA M ′ = (Q,Σ, δ, s,Z )
Claim: L(M ′) = PREFIX(L).
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Exercise: SUFFIX

Let L be a language over Σ.

Definition
SUFFIX(L) = {w | xw ∈ L, x ∈ Σ∗}

Prove the following:

Theorem
If L is regular then PREFIX(L) is regular.
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Exercise: SUFFIX
An alternative “proof” using a figure
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THE END
...

(for now)
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