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5.1
Equivalence of NFAs and DFAs
FLNAME:5.1.0
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Regular Languages, DFAs, NFAs

Theorem
Languages accepted by DFAs, NFAs, and regular expressions are the same.

DFAs are special cases of NFAs (easy)

NFAs accept regular expressions (seen)

DFAs accept languages accepted by NFAs (shortly)

Regular expressions for languages accepted by DFAs (later in the course)
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Equivalence of NFAs and DFAs

Theorem
For every NFA N there is a DFA M such that L(M) = L(N).
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Algorithms & Models of Computation
CS/ECE 374, Fall 2020

5.1.1
The idea of the conversion of NFA to
DFA
FLNAME:5.1.1
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DFAs are memoryless...

1 DFA knows only its current state.

2 The state is the memory.

3 To design a DFA, answer the question:
What minimal info needed to solve problem.
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Simulating NFA
Example the first revisited

Previous lecture.. Ran NFA
(N1) A B C D E

a,b

a b a b

a,b

on input ababa.

t = 0:

A B C D E

a,b

a b a b

a,b

→

t = 1:

A B C D E

a,b

a b a b

a,b

→

t = 2:

A B C D E

a,b

a b a b

a,b

→

t = 3:

A B C D E

a,b

a b a b

a,b

→

t = 4:

A B C D E

a,b

a b a b

a,b

→

t = 5:

A B C D E

a,b

a b a b

a,b
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The state of the NFA
It is easy to state that the state of the automata is the states that it might be situated at.

(N1) A B C D E

a,b

a b a b

a,b

configuration: A set of states the automata might be in.
Possible configurations: ∅, {A}, {A,B}...
Big idea: Build a DFA on the configurations.
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Example

active thread in a particular state. Thus, to simulate the NFA, the DFA only needs to maintain the current
set of states of the NFA.

The formal construction based on the above idea is as follows. Consider an NFA N = (Q,⌃, �, s, A).
Define the DFA det(N) = (Q0,⌃, �0, s0, A0) as follows.

• Q0 = P(Q)

• s0 = �⇤N (s, ✏)

• A0 = {X ✓ Q | X \ A 6= ;}

• �0({q1, q2, . . . qk}, a) = �⇤N (q1, a) [ �⇤N (q2, a) [ · · · [ �⇤N (qk, a) or more concisely,

�0(X, a) =
[

q2X

�⇤N (q, a)

An example NFA is shown in Figure 4 along with the DFA det(N) in Figure 5.

q0 q1

0, 1

1

0, 1

Figure 4: NFA N

{q0} {q0, q1}

{q1} {}

0
0, 1

0, 10, 1

1

Figure 5: DFA det(N) equivalent to N

We will now prove that the DFA defined above is correct. That is

Lemma 4. L(N) = L(det(N))

Proof. Need to show
8w 2 ⌃⇤. det(N) accepts w i↵ N accepts w
8w 2 ⌃⇤. �⇤det(N)(s

0, w) 2 A0 i↵ �⇤N (s, w) \ A 6= ;
8w 2 ⌃⇤. �⇤det(N)(s

0, w) \ A 6= ; i↵ �⇤N (s, w) \ A 6= ;
Again for the induction proof to go through we need to strengthen the claim as follows.

8w 2 ⌃⇤. �⇤det(N)(s
0, w) = �⇤N (s, w)

In other words, this says that the state of the DFA after reading some string is exactly the set of states the
NFA could be in after reading the same string.

The proof of the strengthened statement is by induction on |w|.

Base Case If |w| = 0 then w = ✏. Now

�⇤det(N)(s
0, ✏) = s0 = �⇤N (s, ✏) by the defn. of �⇤det(N) and defn. of s0

7
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Simulating an NFA by a DFA

Think of a program with fixed memory that needs to simulate NFA N on input w .

What does it need to store after seeing a prefix x of w?

It needs to know at least δ∗(s, x), the set of states that N could be in after
reading x
Is it sufficient? Yes, if it can compute δ∗(s, xa) after seeing another symbol a in
the input.

When should the program accept a string w? If δ∗(s,w) ∩ A 6= ∅.
Key Observation: DFA M simulating N should know current configuration of N .

State space of the DFA is P(Q).
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Example: DFA from NFA

NFA:
(N1) A B C D E

a,b

a b a b

a,b

DFA:

A B C D E

a,b

a b a b

a,b

A B C D E

a,b

a b a b

a,b

A B C D E

a,b

a b a b

a,b

A B C D E

a,b

a b a b

a,b

A B C D E

a,b

a b a b

a,b

A B C D E

a,b

a b a b

a,b

A B C D E

a,b

a b a b

a,b

A B C D E

a,b

a b a b

a,b

A B C D E

a,b

a b a b

a,b

A B C D E

a,b

a b a b

a,b

A B C D E

a,b

a b a b

a,b

A B C D E

a,b

a b a b

a,b

A B C D E

a,b

a b a b

a,b

A B C D E

a,b

a b a b

a,b

A B C D E

a,b

a b a b

a,b

A B C D E

a,b

a b a b

a,b

b a

a b a

b

a

b

a

b

a

ba

b

a

b

b
a

a

b

ab

a

b

a
b

a
b

a

b

a

b
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Formal Tuple Notation for NFA

Definition
A non-deterministic finite automata (NFA) N = (Q,Σ, δ, s,A) is a five tuple where

Q is a finite set whose elements are called states,

Σ is a finite set called the input alphabet,

δ : Q × Σ ∪ {ε} → P(Q) is the transition function (here P(Q) is the power set
of Q),

s ∈ Q is the start state,

A ⊆ Q is the set of accepting/final states.

δ(q, a) for a ∈ Σ ∪ {ε} is a subset of Q — a set of states.
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THE END
...

(for now)
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