3.4

Product Construction

## Union and Intersection

Question: Are languages accepted by DFAs closed under union? That is, given DFAs $M_{1}$ and $M_{2}$ is there a DFA that accepts $L\left(M_{1}\right) \cup L\left(M_{2}\right)$ ? How about intersection $L\left(M_{1}\right) \cap L\left(M_{2}\right)$ ?

Idea from programming: on input string w

- Simulate $M_{1}$ on $w$
- Simulate $M_{2}$ on w
- If both accept than $w \in L\left(M_{1}\right) \cap L\left(M_{2}\right)$. If at least one accepts then $w \in L\left(M_{1}\right) \cup L\left(M_{2}\right)$
- Catch: We want a single DFA M that can only read w once.
- Solution: Simulate $M_{1}$ and $M_{2}$ in parallel by keeping track of states of both machines


## Union and Intersection

Question: Are languages accepted by DFAs closed under union? That is, given DFAs $M_{1}$ and $M_{2}$ is there a DFA that accepts $L\left(M_{1}\right) \cup L\left(M_{2}\right)$ ? How about intersection $L\left(M_{1}\right) \cap L\left(M_{2}\right)$ ?

Idea from programming: on input string $w$

- Simulate $M_{1}$ on $w$
- Simulate $M_{2}$ on $w$
- If both accept than $w \in L\left(M_{1}\right) \cap L\left(M_{2}\right)$. If at least one accepts then $w \in L\left(M_{1}\right) \cup L\left(M_{2}\right)$.
- 
- Solution: Simulate $M_{1}$ and $M_{2}$ in parallel by keeping track of states of both machines


## Union and Intersection

Question: Are languages accepted by DFAs closed under union? That is, given DFAs $M_{1}$ and $M_{2}$ is there a DFA that accepts $L\left(M_{1}\right) \cup L\left(M_{2}\right)$ ? How about intersection $L\left(M_{1}\right) \cap L\left(M_{2}\right)$ ?

Idea from programming: on input string $w$

- Simulate $M_{1}$ on $w$
- Simulate $M_{2}$ on $w$
- If both accept than $w \in L\left(M_{1}\right) \cap L\left(M_{2}\right)$. If at least one accepts then $w \in L\left(M_{1}\right) \cup L\left(M_{2}\right)$.
- Catch: We want a single DFA $M$ that can only read $w$ once.
- Solution: Simulate $M_{1}$ and $M_{2}$ in parallel by keeping track of states of both machines


## Union and Intersection

Question: Are languages accepted by DFAs closed under union? That is, given DFAs $M_{1}$ and $M_{2}$ is there a DFA that accepts $L\left(M_{1}\right) \cup L\left(M_{2}\right)$ ? How about intersection $L\left(M_{1}\right) \cap L\left(M_{2}\right)$ ?

Idea from programming: on input string $w$

- Simulate $M_{1}$ on $w$
- Simulate $M_{2}$ on $w$
- If both accept than $w \in L\left(M_{1}\right) \cap L\left(M_{2}\right)$. If at least one accepts then $w \in L\left(M_{1}\right) \cup L\left(M_{2}\right)$.
- Catch: We want a single DFA $M$ that can only read $w$ once.
- Solution: Simulate $M_{1}$ and $M_{2}$ in parallel by keeping track of states of both machines


## Example



## Example



## Cross-product machine

## Example II

## Accept all binary strings of length divisible by 3 and 5



## Product construction for intersection

$$
M_{1}=\left(Q_{1}, \Sigma, \delta_{1}, s_{1}, A_{1}\right) \text { and } M_{2}=\left(Q_{1}, \Sigma, \delta_{2}, s_{2}, A_{2}\right)
$$

Create $M=(\boldsymbol{Q}, \Sigma, \delta, s, A)$ where

- $s=\left(s_{1}, s_{2}\right)$


$$
\delta\left(\left(\boldsymbol{q}_{1}, \boldsymbol{q}_{2}\right), a\right)=\left(\delta_{1}\left(\boldsymbol{q}_{1}, a\right), \delta_{2}\left(\boldsymbol{q}_{2}, a\right)\right)
$$

- $A=A_{1} \times A_{2}=\left\{\left(q_{1}, q_{2}\right) \mid q_{1} \in A_{1}, \boldsymbol{q}_{2} \in A_{2}\right\}$


## Theorem

$L(M)=L\left(M_{1}\right) \cap L\left(M_{2}\right)$

## Product construction for intersection

```
M
Create M = (Q,\Sigma, \delta, s,A) where
    - }\boldsymbol{Q}=\mp@subsup{Q}{1}{}\times\mp@subsup{Q}{2}{}={(\mp@subsup{q}{1}{},\mp@subsup{q}{2}{})|\mp@subsup{q}{1}{}\in\mp@subsup{Q}{1}{},\mp@subsup{q}{2}{}\in\mp@subsup{Q}{2}{}
    - s=( }\mp@subsup{s}{1}{},\mp@subsup{S}{2}{}
    - }\delta:Q\times\Sigma->Q wher
                                    \delta((q}\mp@subsup{q}{1}{},\mp@subsup{q}{2}{}),a)=(\mp@subsup{\delta}{1}{}(\mp@subsup{q}{1}{},a),\mp@subsup{\delta}{2}{}(\mp@subsup{q}{2}{},a)
- A= A A < A A = {(q},\mp@subsup{q}{1}{},\mp@subsup{q}{2}{})|\mp@subsup{q}{1}{}\in\mp@subsup{A}{1}{},\mp@subsup{\boldsymbol{q}}{2}{}\in\mp@subsup{A}{2}{}
```


## Theorem

$L(M)=L\left(M_{1}\right) \cap L\left(M_{2}\right)$

## Product construction for intersection

```
M
Create M = (Q,\Sigma, \delta, s,A) where
    - }\boldsymbol{Q}=\mp@subsup{Q}{1}{}\times\mp@subsup{Q}{2}{}={(\mp@subsup{q}{1}{},\mp@subsup{\boldsymbol{q}}{2}{})|\mp@subsup{\boldsymbol{q}}{1}{}\in\mp@subsup{Q}{1}{},\mp@subsup{\boldsymbol{q}}{2}{}\in\mp@subsup{Q}{2}{}
    - }\delta:Q\times\Sigma->Q wher
                                    \delta((\mp@subsup{q}{1}{},\mp@subsup{q}{2}{}),a)=(\mp@subsup{\delta}{1}{}(\mp@subsup{q}{1}{},a),\mp@subsup{\delta}{2}{}(\mp@subsup{q}{2}{},a))
- A= A A < A A = {(q
```


## Theorem

$L(M)=L\left(M_{1}\right) \cap L\left(M_{2}\right)$

## Product construction for intersection

```
M
Create M = (Q,\Sigma, \delta, s,A) where
    - }\boldsymbol{Q}=\mp@subsup{Q}{1}{}\times\mp@subsup{Q}{2}{}={(\mp@subsup{\boldsymbol{q}}{1}{},\mp@subsup{\boldsymbol{q}}{2}{})|\mp@subsup{\boldsymbol{q}}{1}{}\in\mp@subsup{Q}{1}{},\mp@subsup{\boldsymbol{q}}{2}{}\in\mp@subsup{Q}{2}{}
    - s=
    0 }\delta:Q\times\Sigma->Q wher
                                    \delta((\mp@subsup{q}{1}{},\mp@subsup{q}{2}{}),a)=(\mp@subsup{\delta}{1}{}(\mp@subsup{q}{1}{},a),\mp@subsup{\delta}{2}{}(\mp@subsup{q}{2}{},a))
- A= A A < A A = {(\mp@subsup{q}{1}{},\mp@subsup{q}{2}{})|\mp@subsup{\boldsymbol{q}}{1}{}\in\mp@subsup{A}{1}{},\mp@subsup{\boldsymbol{q}}{2}{}\in\mp@subsup{A}{2}{}}
```


## Theorem

## Product construction for intersection

$$
\begin{aligned}
& M_{1}=\left(\boldsymbol{Q}_{1}, \Sigma, \boldsymbol{\delta}_{1}, s_{1}, \boldsymbol{A}_{1}\right) \text { and } \boldsymbol{M}_{2}=\left(\boldsymbol{Q}_{1}, \Sigma, \boldsymbol{\delta}_{2}, \boldsymbol{s}_{2}, \boldsymbol{A}_{2}\right) \\
& \text { Create } \boldsymbol{M}=(\boldsymbol{Q}, \Sigma, \boldsymbol{\delta}, \boldsymbol{s}, \boldsymbol{A}) \text { where } \\
& \bullet \boldsymbol{Q}=\boldsymbol{Q}_{1} \times \boldsymbol{Q}_{2}=\left\{\left(\boldsymbol{q}_{1}, \boldsymbol{q}_{2}\right) \mid \boldsymbol{q}_{1} \in \boldsymbol{Q}_{1}, \boldsymbol{q}_{2} \in \boldsymbol{Q}_{2}\right\} \\
& \text { • } \boldsymbol{s}=\left(\boldsymbol{s}_{1}, \boldsymbol{s}_{2}\right) \\
& \text { • } \delta: Q \times \Sigma \rightarrow Q \text { where } \\
& \qquad \delta\left(\left(q_{1}, q_{2}\right), a\right)=\left(\delta_{1}\left(q_{1}, a\right), \delta_{2}\left(q_{2}, a\right)\right) \\
& A=A_{1} \times A_{2}=\left\{\left(q_{1}, q_{2}\right) \mid q_{1} \in A_{1}, q_{2} \in A_{2}\right\}
\end{aligned}
$$

## Theorem

$L(M)=L\left(M_{1}\right) \cap L\left(M_{2}\right)$

## Product construction for intersection

$M_{1}=\left(Q_{1}, \Sigma, \delta_{1}, s_{1}, A_{1}\right)$ and $M_{2}=\left(Q_{1}, \Sigma, \delta_{2}, s_{2}, A_{2}\right)$
Create $M=(\boldsymbol{Q}, \Sigma, \delta, s, A)$ where

- $\boldsymbol{Q}=Q_{1} \times Q_{2}=\left\{\left(\boldsymbol{q}_{1}, \boldsymbol{q}_{2}\right) \mid \boldsymbol{q}_{1} \in Q_{1}, \boldsymbol{q}_{2} \in Q_{2}\right\}$
- $\boldsymbol{s}=\left(s_{1}, s_{2}\right)$
- $\delta: Q \times \Sigma \rightarrow Q$ where

$$
\boldsymbol{\delta}\left(\left(\boldsymbol{q}_{1}, \boldsymbol{q}_{2}\right), \boldsymbol{a}\right)=\left(\delta_{1}\left(q_{1}, a\right), \delta_{2}\left(q_{2}, a\right)\right)
$$

- $A=A_{1} \times A_{2}=\left\{\left(q_{1}, q_{2}\right) \mid q_{1} \in A_{1}, \boldsymbol{q}_{2} \in A_{2}\right\}$


## Theorem

$L(M)=L\left(M_{1}\right) \cap L\left(M_{2}\right)$

## Product construction for intersection

$M_{1}=\left(Q_{1}, \Sigma, \delta_{1}, s_{1}, A_{1}\right)$ and $M_{2}=\left(Q_{1}, \Sigma, \delta_{2}, s_{2}, A_{2}\right)$
Create $M=(\boldsymbol{Q}, \Sigma, \delta, s, A)$ where

- $\boldsymbol{Q}=Q_{1} \times Q_{2}=\left\{\left(\boldsymbol{q}_{1}, \boldsymbol{q}_{2}\right) \mid \boldsymbol{q}_{1} \in Q_{1}, \boldsymbol{q}_{2} \in Q_{2}\right\}$
- $\boldsymbol{s}=\left(s_{1}, s_{2}\right)$
- $\delta: Q \times \Sigma \rightarrow Q$ where

$$
\delta\left(\left(q_{1}, q_{2}\right), a\right)=\left(\delta_{1}\left(q_{1}, a\right), \delta_{2}\left(q_{2}, a\right)\right)
$$

- $A=A_{1} \times A_{2}=\left\{\left(q_{1}, q_{2}\right) \mid q_{1} \in A_{1}, q_{2} \in A_{2}\right\}$


## Theorem

$L(M)=L\left(M_{1}\right) \cap L\left(M_{2}\right)$

## Product construction for intersection

$M_{1}=\left(Q_{1}, \Sigma, \delta_{1}, s_{1}, A_{1}\right)$ and $M_{2}=\left(Q_{1}, \Sigma, \delta_{2}, s_{2}, A_{2}\right)$
Create $M=(\boldsymbol{Q}, \Sigma, \delta, s, A)$ where

- $\boldsymbol{Q}=Q_{1} \times Q_{2}=\left\{\left(\boldsymbol{q}_{1}, \boldsymbol{q}_{2}\right) \mid \boldsymbol{q}_{1} \in Q_{1}, \boldsymbol{q}_{2} \in Q_{2}\right\}$
- $\boldsymbol{s}=\left(s_{1}, s_{2}\right)$
- $\delta: Q \times \Sigma \rightarrow Q$ where

$$
\delta\left(\left(q_{1}, q_{2}\right), a\right)=\left(\delta_{1}\left(q_{1}, a\right), \delta_{2}\left(q_{2}, a\right)\right)
$$

- $\boldsymbol{A}=A_{1} \times A_{2}=\left\{\left(q_{1}, q_{2}\right) \mid q_{1} \in A_{1}, q_{2} \in A_{2}\right\}$


## Theorem

$L(M)=L\left(M_{1}\right) \cap L\left(M_{2}\right)$

## Product construction for intersection

$M_{1}=\left(Q_{1}, \Sigma, \delta_{1}, s_{1}, A_{1}\right)$ and $M_{2}=\left(Q_{1}, \Sigma, \delta_{2}, s_{2}, A_{2}\right)$
Create $M=(\boldsymbol{Q}, \Sigma, \delta, s, A)$ where

- $\boldsymbol{Q}=Q_{1} \times Q_{2}=\left\{\left(\boldsymbol{q}_{1}, \boldsymbol{q}_{2}\right) \mid \boldsymbol{q}_{1} \in Q_{1}, \boldsymbol{q}_{2} \in Q_{2}\right\}$
- $\boldsymbol{s}=\left(s_{1}, s_{2}\right)$
- $\delta: Q \times \Sigma \rightarrow Q$ where

$$
\delta\left(\left(q_{1}, q_{2}\right), a\right)=\left(\delta_{1}\left(q_{1}, a\right), \delta_{2}\left(q_{2}, a\right)\right)
$$

- $\boldsymbol{A}=\boldsymbol{A}_{1} \times \boldsymbol{A}_{2}=\left\{\left(\boldsymbol{q}_{1}, \boldsymbol{q}_{2}\right) \mid \boldsymbol{q}_{1} \in \boldsymbol{A}_{1}, \boldsymbol{q}_{2} \in \boldsymbol{A}_{2}\right\}$


## Product construction for intersection

$M_{1}=\left(Q_{1}, \Sigma, \delta_{1}, s_{1}, A_{1}\right)$ and $M_{2}=\left(Q_{1}, \Sigma, \delta_{2}, s_{2}, A_{2}\right)$
Create $M=(\boldsymbol{Q}, \Sigma, \delta, s, A)$ where

- $\boldsymbol{Q}=Q_{1} \times Q_{2}=\left\{\left(\boldsymbol{q}_{1}, \boldsymbol{q}_{2}\right) \mid \boldsymbol{q}_{1} \in Q_{1}, \boldsymbol{q}_{2} \in Q_{2}\right\}$
- $\boldsymbol{s}=\left(s_{1}, s_{2}\right)$
- $\delta: Q \times \Sigma \rightarrow Q$ where

$$
\delta\left(\left(q_{1}, q_{2}\right), a\right)=\left(\delta_{1}\left(q_{1}, a\right), \delta_{2}\left(q_{2}, a\right)\right)
$$

- $\boldsymbol{A}=\boldsymbol{A}_{1} \times \boldsymbol{A}_{2}=\left\{\left(\boldsymbol{q}_{1}, \boldsymbol{q}_{2}\right) \mid \boldsymbol{q}_{1} \in \boldsymbol{A}_{1}, \boldsymbol{q}_{2} \in \boldsymbol{A}_{2}\right\}$


## Theorem

$L(M)=L\left(M_{1}\right) \cap L\left(M_{2}\right)$.

## Correctness of construction

## Lemma

For each string $w, \delta^{*}(s, w)=\left(\delta_{1}^{*}\left(s_{1}, w\right), \delta_{2}^{*}\left(s_{2}, w\right)\right)$.
Exercise: Assuming lemma prove the theorem in previous slide. Proof of lemma by induction on $|w|$

## Correctness of construction

## Lemma

For each string $w, \delta^{*}(s, w)=\left(\delta_{1}^{*}\left(s_{1}, w\right), \delta_{2}^{*}\left(s_{2}, w\right)\right)$.
Exercise: Assuming lemma prove the theorem in previous slide. Proof of lemma by

## induction on w

## Correctness of construction

## Lemma

For each string $w, \delta^{*}(s, w)=\left(\delta_{1}^{*}\left(s_{1}, w\right), \delta_{2}^{*}\left(s_{2}, w\right)\right)$.
Exercise: Assuming lemma prove the theorem in previous slide. Proof of lemma by induction on $|w|$

## Product construction for union

$M_{1}=\left(Q_{1}, \Sigma, \delta_{1}, s_{1}, A_{1}\right)$ and $M_{2}=\left(Q_{1}, \Sigma, \delta_{2}, s_{2}, A_{2}\right)$
Create $M=(\boldsymbol{Q}, \Sigma, \delta, s, A)$ where

- $\boldsymbol{Q}=Q_{1} \times Q_{2}=\left\{\left(\boldsymbol{q}_{1}, \boldsymbol{q}_{2}\right) \mid \boldsymbol{q}_{1} \in \boldsymbol{Q}_{1}, \boldsymbol{q}_{2} \in Q_{2}\right\}$
- $\boldsymbol{s}=\left(s_{1}, s_{2}\right)$
- $\delta: Q \times \Sigma \rightarrow Q$ where

$$
\delta\left(\left(q_{1}, q_{2}\right), a\right)=\left(\delta_{1}\left(q_{1}, a\right), \delta_{2}\left(q_{2}, a\right)\right)
$$

- $\boldsymbol{A}=\left\{\left(q_{1}, q_{2}\right) \mid q_{1} \in A_{1}\right.$ or $\left.q_{2} \in A_{2}\right\}$


## Product construction for union

$M_{1}=\left(Q_{1}, \Sigma, \delta_{1}, s_{1}, A_{1}\right)$ and $M_{2}=\left(Q_{1}, \Sigma, \delta_{2}, s_{2}, A_{2}\right)$
Create $M=(Q, \Sigma, \delta, s, A)$ where

- $Q=Q_{1} \times Q_{2}=\left\{\left(\boldsymbol{q}_{1}, \boldsymbol{q}_{2}\right) \mid \boldsymbol{q}_{1} \in Q_{1}, \boldsymbol{q}_{2} \in Q_{2}\right\}$
- $s=\left(s_{1}, s_{2}\right)$
- $\delta: Q \times \Sigma \rightarrow Q$ where

$$
\delta\left(\left(q_{1}, q_{2}\right), a\right)=\left(\delta_{1}\left(q_{1}, a\right), \delta_{2}\left(q_{2}, a\right)\right)
$$

- $A=\left\{\left(\boldsymbol{q}_{1}, \boldsymbol{q}_{2}\right) \mid \boldsymbol{q}_{1} \in \boldsymbol{A}_{1}\right.$ or $\left.\boldsymbol{q}_{2} \in \boldsymbol{A}_{2}\right\}$


## Theorem

$L(M)=L\left(M_{1}\right) \cup L\left(M_{2}\right)$.

## Set Difference

## Theorem

$M_{1}, M_{2}$ DFAs. There is a DFA $M$ such that $L(M)=L\left(M_{1}\right) \backslash L\left(M_{2}\right)$.
Exercise: Prove the above using two methods.

- Using a direct product construction
- Using closure under complement and intersection and union


## Things to know: 2-way DFA



Question: Why are DFAs required to only move right?
Can we allow DFA to scan back and forth? Caveat: Tape is read-only so only memory is in machine's state.

- Can define a formal notion of a "2-way" DFA
- Can show that any language recognized by a 2-way DFA can be recognized by a regular (1-way) DFA
- Proof is tricky simulation via


## Things to know: 2-way DFA



Question: Why are DFAs required to only move right?
Can we allow DFA to scan back and forth? Caveat: Tape is read-only so only memory is in machine's state.

- Can define a formal notion of a "2-way" DFA
- Can show that any language recognized by a 2-way DFA can be recognized by a regular (1-way) DFA
- Proof is tricky simulation via NFAs


## THE END

## (for now)

