1.3
 Inductive proofs on strings

Inductive proofs on strings

Inductive proofs on strings and related problems follow inductive definitions.

Definition

The reverse w^{R} of a string w is defined as follows:

- $w^{R}=\epsilon$ if $w=\epsilon$
- $w^{R}=x^{R} a$ if $w=a x$ for some $a \in \Sigma$ and string x

Theorem

Prove that for any strings $u, v \in \Sigma^{*},(u v)^{R}=v^{R} u^{R}$.
Example: $(\mathrm{dog} \cdot \mathrm{cat})^{R}=(c a t)^{R} \cdot(\mathrm{dog})^{R}=$ tacgod .

Inductive proofs on strings

Inductive proofs on strings and related problems follow inductive definitions.

Definition

The reverse w^{R} of a string w is defined as follows:

- $w^{R}=\epsilon$ if $w=\epsilon$
- $w^{R}=x^{R} a$ if $w=a x$ for some $a \in \Sigma$ and string x

Theorem

Prove that for any strings $u, v \in \Sigma^{*},(u v)^{R}=v^{R} u^{R}$.
Example: $(\operatorname{dog} \bullet c a t)^{R}=(c a t)^{R} \bullet(\operatorname{dog})^{R}=\operatorname{tacgod}$.

Principle of mathematical induction

Induction is a way to prove statements of the form $\forall \boldsymbol{n} \geq 0, \boldsymbol{P}(\boldsymbol{n})$ where $\boldsymbol{P}(\boldsymbol{n})$ is a statement that holds for integer \boldsymbol{n}.

Example: Prove that $\sum_{\boldsymbol{i}=0}^{\boldsymbol{n}} \boldsymbol{i}=\boldsymbol{n}(\boldsymbol{n}+1) / 2$ for all \boldsymbol{n}.
Induction template:

- Base case: Prove $P(0)$
- Induction hypothesis: Let $\boldsymbol{k}>0$ be an arbitrary integer. Assume that $\boldsymbol{P}(\boldsymbol{n})$ holds for any $\boldsymbol{n} \leq \boldsymbol{k}$.
- Induction Step: Prove that $\boldsymbol{P}(\boldsymbol{n})$ holds, for $\boldsymbol{n}=\boldsymbol{k}+1$.

Structured induction

(1) Unlike simple cases we are working with...
(2) ...induction proofs also work for more complicated "structures".
(3) Such as strings, tuples of strings, graphs etc.
(4) See class notes on induction for details.

Proving the theorem

Theorem

Prove that for any strings $u, v \in \Sigma^{*},(u v)^{R}=v^{R} u^{R}$.
Proof: by induction.
On what?? $|u v|=|u|+|v|$?
$|u|$?
$|v| ?$
What does it mean "induction on $|u|$ "?

1.3.1: Three proofs by induction

1.3.1.1:Induction on $|u|$

By induction on $|\mathrm{u}|$

Theorem

Prove that for any strings $u, v \in \Sigma^{*},(u v)^{R}=v^{R} u^{R}$.
Proof by induction on $|\boldsymbol{u}|$ means that we are proving the following.
Base case: Let \boldsymbol{u} be an arbitrary string of length 0 . $\boldsymbol{u}=\boldsymbol{\epsilon}$ since there is only one such string. Then
$(u v)^{R}=(\epsilon v)^{R}=v^{R}=v^{R} \epsilon=v^{R} \epsilon^{R}=v^{R} u^{R}$
Induction hypothesis: $\forall n \geq 0$, for any string u of length n :
For all strings $v \in \Sigma^{*},(u v)^{R}=v^{R} u^{R}$.
No assumption about v, hence statement holds for all $v \in \Sigma^{*}$

By induction on $|\mathrm{u}|$

Theorem

Prove that for any strings $u, v \in \Sigma^{*},(u v)^{R}=v^{R} u^{R}$.
Proof by induction on $|\boldsymbol{u}|$ means that we are proving the following.
Base case: Let \boldsymbol{u} be an arbitrary string of length $0 . \boldsymbol{u}=\boldsymbol{\epsilon}$ since there is only one such string. Then
$(u v)^{R}=(\epsilon v)^{R}=v^{R}=v^{R} \epsilon=v^{R} \epsilon^{R}=v^{R} u^{R}$
Induction hypothesis: $\forall \boldsymbol{n} \geq 0$, for any string \boldsymbol{u} of length \boldsymbol{n} :
For all strings $v \in \Sigma^{*},(u v)^{R}=v^{R} u^{R}$.
No assumption about v, hence statement holds for all $v \in \Sigma^{*}$

By induction on $|\mathrm{u}|$

Theorem

Prove that for any strings $u, v \in \Sigma^{*},(u v)^{R}=v^{R} u^{R}$.
Proof by induction on $|\boldsymbol{u}|$ means that we are proving the following.
Base case: Let \boldsymbol{u} be an arbitrary string of length $0 . \boldsymbol{u}=\boldsymbol{\epsilon}$ since there is only one such string. Then
$(u v)^{R}=(\epsilon v)^{R}=v^{R}=v^{R} \epsilon=v^{R} \epsilon^{R}=v^{R} u^{R}$
Induction hypothesis: $\forall \boldsymbol{n} \geq 0$, for any string \boldsymbol{u} of length \boldsymbol{n} :
For all strings $v \in \Sigma^{*},(u v)^{R}=v^{R} u^{R}$.
No assumption about v, hence statement holds for all $v \in \Sigma^{*}$.

Inductive step

- Let \boldsymbol{u} be an arbitrary string of length $\boldsymbol{n}>0$. Assume inductive hypothesis holds for all strings \boldsymbol{w} of length $<\boldsymbol{n}$.
- Since $|\boldsymbol{u}|=\boldsymbol{n}>0$ we have $\boldsymbol{u}=$ ay for some string \boldsymbol{y} with $|\boldsymbol{y}|<n$ and $a \in \Sigma$.
- Then

Inductive step

- Let \boldsymbol{u} be an arbitrary string of length $\boldsymbol{n}>0$. Assume inductive hypothesis holds for all strings \boldsymbol{w} of length $<\boldsymbol{n}$.
- Since $|\boldsymbol{u}|=\boldsymbol{n}>0$ we have $\boldsymbol{u}=$ ay for some string \boldsymbol{y} with $|\boldsymbol{y}|<n$ and $a \in \Sigma$.
- Then

$$
(\boldsymbol{u} \boldsymbol{v})^{R}=((a y) v)^{R}
$$

Inductive step

- Let \boldsymbol{u} be an arbitrary string of length $\boldsymbol{n}>0$. Assume inductive hypothesis holds for all strings \boldsymbol{w} of length $<\boldsymbol{n}$.
- Since $|\boldsymbol{u}|=\boldsymbol{n}>0$ we have $\boldsymbol{u}=$ ay for some string \boldsymbol{y} with $|\boldsymbol{y}|<n$ and $a \in \Sigma$.
- Then

$$
\begin{aligned}
(u v)^{R} & =((a y) v)^{R} \\
& =(a(y v))^{R} \\
& =(y v)^{R} a^{R} \\
& =\left(v^{R} y^{R}\right) a^{R} \\
& =v^{R}\left(y^{R} a^{R}\right) \\
& =v^{R}(a y)^{R} \\
& =v^{R} u^{R}
\end{aligned}
$$

1.3.1.2: A failed attempt: Induction on $|v|$

Induction on $|v|$

Theorem
 Prove that for any strings $u, v \in \Sigma^{*},(u v)^{R}=v^{R} u^{R}$.

Proof by induction on $|v|$ means that we are proving the following.
Induction hypothesis: $\forall n \geq 0$, for any string v of length n : For all strings $u \in \Sigma^{*},(u v)^{R}=v^{R} u^{R}$.

Base case: Let v be an arbitrary string of length $0 . v=\epsilon$ since there is only one such string. Then

Induction on $|v|$

Theorem

Prove that for any strings $u, v \in \Sigma^{*},(u v)^{R}=v^{R} u^{R}$.
Proof by induction on $|v|$ means that we are proving the following. Induction hypothesis: $\forall \boldsymbol{n} \geq 0$, for any string \boldsymbol{v} of length \boldsymbol{n} :

For all strings $u \in \Sigma^{*},(u v)^{R}=v^{R} u^{R}$.
Base case: Let v be an arbitrary string of length $0 . v=\epsilon$ since there is only one such string. Then

Induction on $|v|$

Theorem

Prove that for any strings $u, v \in \Sigma^{*},(u v)^{R}=v^{R} u^{R}$.
Proof by induction on $|v|$ means that we are proving the following. Induction hypothesis: $\forall \boldsymbol{n} \geq 0$, for any string \boldsymbol{v} of length \boldsymbol{n} :

For all strings $u \in \Sigma^{*},(u v)^{R}=v^{R} u^{R}$.
Base case: Let v be an arbitrary string of length 0 . $v=\epsilon$ since there is only one such string. Then

$$
(u v)^{R}=(u \epsilon)^{R}=u^{R}=\epsilon u^{R}=\epsilon^{R} u^{R}=v^{R} u^{R}
$$

Inductive step

- Let \boldsymbol{v} be an arbitrary string of length $\boldsymbol{n}>0$. Assume inductive hypothesis holds for all strings w of length $<\boldsymbol{n}$.
- Since $|v|=n>0$ we have $v=a y$ for some string y with $|y|<n$ and $a \in \Sigma$.
- Then

$$
\begin{aligned}
(u v)^{R} & =(u(\text { ay }))^{R} \\
& =((u a) y)^{R} \\
& =y^{R}(u a)^{R} \\
& =? ?
\end{aligned}
$$

Inductive step

- Let v be an arbitrary string of length $\boldsymbol{n}>0$. Assume inductive hypothesis holds for all strings \boldsymbol{w} of length $<\boldsymbol{n}$.
- Since $|\boldsymbol{v}|=\boldsymbol{n}>0$ we have $\boldsymbol{v}=a y$ for some string \boldsymbol{y} with $|\boldsymbol{y}|<\boldsymbol{n}$ and $a \in \Sigma$.
- Then

$$
\begin{aligned}
(u v)^{R} & =(u(\text { ay }))^{R} \\
& =((u a) y)^{R} \\
& =y^{R}(u a)^{R} \\
& =? ?
\end{aligned}
$$

Cannot simplify (ua) ${ }^{R}$ using inductive hypothesis. Can simplify if we extend base case to include $\boldsymbol{n}=0$ and $\boldsymbol{n}=1$. However, $\boldsymbol{n}=1$ itself requires induction on $|\boldsymbol{u}|$!
1.3.1.3:Induction on $|u|+|v|$

Induction on $|u|+|v|$

Theorem
 Prove that for any strings $u, v \in \Sigma^{*},(u v)^{R}=v^{R} u^{R}$.

Proof by induction on $|\boldsymbol{u}|+|\boldsymbol{v}|$ means that we are proving the following. Induction hypothesis: $\forall n \geq 0$, for any $u, v \in \sum^{*}$ with $|u|+|v| \leq n$, $(u v)^{R}=v^{R} u^{R}$.

Base case: $\boldsymbol{n}=0$. Let $\boldsymbol{u}, \boldsymbol{v}$ be an arbitrary strings such that $|\boldsymbol{u}|+|\boldsymbol{v}|=0$. Implies $u, v=\epsilon$.

Inductive step: $n>0$. Let u, v be arbitrary strings such that $|u|+|v|=n$

Induction on $|u|+|v|$

Theorem
 Prove that for any strings $u, v \in \Sigma^{*},(u v)^{R}=v^{R} u^{R}$.

Proof by induction on $|\boldsymbol{u}|+|\boldsymbol{v}|$ means that we are proving the following. Induction hypothesis:

$(u v)^{R}=v^{R} u^{R}$
 Base case: $\boldsymbol{n}=0$. Let $\boldsymbol{u}, \boldsymbol{v}$ be an arbitrary strings such that $|\boldsymbol{u}|+|\boldsymbol{v}|=0$. Implies $u, v=\epsilon$
 Inductive step: $n>0$. Let u, v be arbitrary strings such that $|u|+|v|=n$

Induction on $|\mathrm{u}|+|\mathrm{v}|$

Theorem

Prove that for any strings $u, v \in \Sigma^{*},(u v)^{R}=v^{R} u^{R}$.
Proof by induction on $|\boldsymbol{u}|+|v|$ means that we are proving the following. Induction hypothesis: $\forall n \geq 0$, for any $u, v \in \Sigma^{*}$ with $|\boldsymbol{u}|+|v| \leq \boldsymbol{n}$, $(u v)^{R}=v^{R} u^{R}$.

Base case: $\boldsymbol{n}=0$. Let $\boldsymbol{u}, \boldsymbol{v}$ be an arbitrary strings such that $|\boldsymbol{u}|+|\boldsymbol{v}|=0$. Implies $u, v=\epsilon$.

Induction on $|u|+|v|$

Theorem

Prove that for any strings $u, v \in \Sigma^{*},(u v)^{R}=v^{R} u^{R}$.
Proof by induction on $|\boldsymbol{u}|+|v|$ means that we are proving the following. Induction hypothesis: $\forall \boldsymbol{n} \geq 0$, for any $\boldsymbol{u}, \boldsymbol{v} \in \Sigma^{*}$ with $|\boldsymbol{u}|+|v| \leq \boldsymbol{n}$, $(u v)^{R}=v^{R} u^{R}$.

Base case: $\boldsymbol{n}=0$. Let $\boldsymbol{u}, \boldsymbol{v}$ be an arbitrary strings such that $|\boldsymbol{u}|+|\boldsymbol{v}|=0$. Implies $u, v=\epsilon$.

Induction on $|u|+|v|$

Theorem

Prove that for any strings $u, v \in \Sigma^{*},(u v)^{R}=v^{R} u^{R}$.
Proof by induction on $|\boldsymbol{u}|+|v|$ means that we are proving the following. Induction hypothesis: $\forall \boldsymbol{n} \geq 0$, for any $\boldsymbol{u}, \boldsymbol{v} \in \Sigma^{*}$ with $|\boldsymbol{u}|+|v| \leq \boldsymbol{n}$, $(u v)^{R}=v^{R} u^{R}$.

Base case: $\boldsymbol{n}=0$. Let $\boldsymbol{u}, \boldsymbol{v}$ be an arbitrary strings such that $|\boldsymbol{u}|+|\boldsymbol{v}|=0$. Implies $u, v=\epsilon$.

Inductive step: $n>0$. Let $\boldsymbol{u}, \boldsymbol{v}$ be arbitrary strings such that $|\boldsymbol{u}|+|\boldsymbol{v}|=\boldsymbol{n}$.

THE END

(for now)

