1 Suppose you are given a magic black box that somehow answers the following decision problem in polynomial time:

- Input: A CNF formula φ with n variables $x_{1}, x_{2}, \ldots, x_{n}$.
- Output: True if there is an assignment of True or False to each variable that satisfies φ.

Using this black box as a subroutine, describe an algorithm that solves the following related search problem in polynomial time:

- Input: A CNF formula φ with n variables x_{1}, \ldots, x_{n}.
- Output: A truth assignment to the variables that satisfies φ, or None if there is no satisfying assignment.
(Hint: You can use the magic box more than once.)
2 An independent set in a graph G is a subset S of the vertices of G, such that no two vertices in S are connected by an edge in G. Suppose you are given a magic black box that somehow answers the following decision problem in polynomial time:
- Input: An undirected graph G and an integer k.
- Output: True if G has an independent set of size k, and False otherwise.
2.A. Using this black box as a subroutine, describe algorithms that solves the following optimization problem in polynomial time:
- Input: An undirected graph G.
- Output: The size of the largest independent set in G.
(Hint: You have seen this problem before.)
2.B. Using this black box as a subroutine, describe algorithms that solves the following search problem in polynomial time:
- Input: An undirected graph G.
- Output: An independent set in G of maximum size.

To think about later:

3 Formally, a proper coloring of a graph $G=(V, E)$ is a function $c: V \rightarrow\{1,2, \ldots, k\}$, for some integer k, such that $c(u) \neq c(v)$ for all $u v \in E$. Less formally, a valid coloring assigns each vertex of G a color, such that every edge in G has endpoints with different colors. The chromatic number of a graph is the minimum number of colors in a proper coloring of G.
Suppose you are given a magic black box that somehow answers the following decision problem in polynomial time:

- Input: An undirected graph G and an integer k.
- Output: True if G has a proper coloring with k colors, and False otherwise.

Using this black box as a subroutine, describe an algorithm that solves the following coloring problem in polynomial time:

- Input: An undirected graph G.
- Output: A valid coloring of G using the minimum possible number of colors.
(Hint: You can use the magic box more than once. The input to the magic box is a graph and only a graph, meaning only vertices and edges.)

