
Discussion 11a: Wednesday, November 2, 2022 Version: 1.0 CS/ECE 374A, Fall 2022

1 Recall the class scheduling problem. We are given two arrays S[1 .. n] and F [1 .. n], where S[i] < F [i] for
each i, representing the start and finish times of n classes. Your goal is to find the largest number of
classes you can take without ever taking two classes simultaneously. We showed in class that the following
greedy algorithm constructs an optimal schedule:

Choose the course that ends first, discard all conflicting classes, and recurse.

But this is not the only greedy strategy we could have tried. For each of the following alternative greedy
algorithms, either prove that the algorithm always constructs an optimal schedule, or describe a small
input example for which the algorithm does not produce an optimal schedule. Assume that all algorithms
break ties arbitrarily (that is, in a manner that is completely out of your control). Exactly three of
these greedy strategies actually work.

• Choose the course x that ends last, discard classes that conflict with x, and recurse.

• Choose the course x that starts first, discard all classes that conflict with x, and recurse.

• Choose the course x that starts last, discard all classes that conflict with x, and recurse.

• Choose the course x with shortest duration, discard all classes that conflict with x, and recurse.

• Choose a course x that conflicts with the fewest other courses, discard all classes that conflict with x,
and recurse.

• If no classes conflict, choose them all. Otherwise, discard the course with longest duration and recurse.

• If no classes conflict, choose them all. Otherwise, discard a course that conflicts with the most other
courses and recurse.

• Let x be the class with the earliest start time, and let y be the class with the second earliest start
time.

– If x and y are disjoint, choose x and recurse on everything but x.
– If x completely contains y, discard x and recurse.
– Otherwise, discard y and recurse.

• If any course x completely contains another course, discard x and recurse. Otherwise, choose the
course y that ends last, discard all classes that conflict with y, and recurse.

2 A party of n people have come to dine at a fancy restaurant and each person has ordered a different item
from the menu. Let D1, D2, . . . , Dn be the items ordered by the diners. Since this is a fancy place, each
item is prepared in a two-stage process. First, the head chef (there is only one head chef) spends a few
minutes on each item to take care of the essential aspects and then hands it over to one of the many
sous-chefs to finish off. Assume that there are essentially an unlimited number of sous-chefs who can work
in parallel on the items once the head chef is done. Each item Di takes hi units of time for the head chef
followed by si units of time for the sous-chef (the sous-chefs are all identical). The diners want all their
items to be served at the same time which means that the last item to be finished defines the time when
they can be served. The goal of the restaurant is to serve the diners as early as possible. Consider the
following greedy algorithms that order the items according to different criteria. For each of them either
describe a counter example that shows that the order does not yield an optimum solution or give a proof
that the ordering yields an optimum solution for all instances.

• Order the items in increasing order of hi + si.

• Order the items in decreasing order of hi + si.

1



• Order the items in increasing order of hi.

• Order the items in decreasing order of hi.

• Order the items in increasing order of si.

• Order the items in decreasing order of si.

2


