Prove that each of the following problems is NP-hard.
1 Given an undirected graph G, does G contain a simple path that visits all but 374 vertices?
2 Given an undirected graph G, does G have a spanning tree in which every node has degree at most 374 ?
3 Given an undirected graph G, does G have a spanning tree with at most 374 leaves?
4 Recall that a 5-coloring of a graph G is a function that assigns each vertex of G a "color" from the set $\{0,1,2,3,4\}$, such that for any edge $u v$, vertices u and v are assigned different "colors". A 5 -coloring is careful if the colors assigned to adjacent vertices are not only distinct, but differ by more than $1(\bmod 5)$. Prove that deciding whether a given graph has a careful 5-coloring is NP-hard. (Hint: Reduce from the standard 5Color problem.)

Figure 1: A careful 5-coloring.
5 Prove that the following problem is NP-hard: Given an undirected graph G, find any integer $k>374$ such that G has a proper coloring with k colors but G does not have a proper coloring with $k-374$ colors.
6 To think about later: A bicoloring of an undirected graph assigns each vertex a set of two colors. There are two types of bicoloring: In a weak bicoloring, the endpoints of each edge must use different sets of colors; however, these two sets may share one color. In a strong bicoloring, the endpoints of each edge must use distinct sets of colors; that is, they must use four colors altogether. Every strong bicoloring is also a weak bicoloring.
6.A. Prove that finding the minimum number of colors in a weak bicoloring of a given graph is NP-hard.
6.B. Prove that finding the minimum number of colors in a strong bicoloring of a given graph is NP-hard.

Figure 2: Left: A weak bicoloring of a 5 -clique with four colors. Right A strong bicoloring of a 5 -cycle with five colors.

