5 (100 pts.) String flip.

Let $\Sigma = \{0, 1\}$, and let $L \subseteq \Sigma^*$ be a regular language. For a string $s = s_1 \ldots s_n \in \Sigma^*$, let $s^R = s_ns_{n-1} \ldots s_1$ be the reverse of s. Consider the following language

$$L_8 = \{xy^Rz \mid x, y, z \in \Sigma^*, |y| \leq 8, \text{ and } xyz \in L\}.$$

Thus, if $010100001111 \in L$, then $010111100000101 \in L_8$ as is $0100100011101 \in L_8$. Prove that L_8 is a regular language.

To this end, you are given a DFA M for L – provide an NFA N for L_8. Describe formally how you construct N from M, and argue why your construction is correct. A formal proof that your construction works is not required.

Hints: (A) Your NFA should use its ability to guess things, and remember constant amount of information (how?). (B) To build up to the solution consider special cases, and solve them first, such as: (i) $x = \varepsilon$, (ii) $z = \varepsilon$, and (iii) $|y| = 2$.

6 (100 pts.) Highly irregular.

For each of the following languages prove that they are not regular using fooling sets. Here $\Sigma = \{0, 1\}$.

6.A. (30 pts.) For a string $w = w_1w_2 \ldots w_k$, let $\text{odd}(w) = w_1w_3w_5 \cdots$ be the string formed by the odd characters of w. Consider the language $L_A = \{w \in (0 + 1)^* \mid \text{odd}(w) \text{ is a palindrome}\}$.

6.B. (30 pts.) $L_B = \{w \in \Sigma^* \mid 10^n10^n1 \text{ is a substring of } w, \text{ where } n \text{ is an integer}\}$.

6.C. (40 pts.) $L_C = \{0^i1^j \mid i + j = k^2, \text{ where } k \text{ is an integer}\}$.