Intro. Algorithms & Models of Computation

CS/ECE 374A, Fall 2022

Even More on Dynamic Programming

Lecture 15 Thursday, October 13, 2022

LATEXed: October 13, 2022 14:17

Part I

Longest Common Subsequence Problem

The LCS Problem

Definition 15.1.

LCS between two strings **X** and **Y** is the length of longest common subsequence between **X** and **Y**.

Example 15.2.

LCS between ABAZDC and BACBAD is 4 via ABAD

Derive a dynamic programming algorithm for the problem

The LCS Problem

Definition 15.1.

LCS between two strings **X** and **Y** is the length of longest common subsequence between **X** and **Y**.

Example 15.2.

LCS between ABAZDC and BACBAD is4 via ABAD

Derive a dynamic programming algorithm for the problem

The LCS Problem

Definition 15.1.

LCS between two strings **X** and **Y** is the length of longest common subsequence between **X** and **Y**.

Example 15.2.

 ${
m LCS}$ between ABAZDC and BACBAD is4 via ABAD

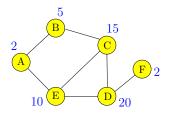
Derive a dynamic programming algorithm for the problem.

Part II

Maximum Weighted Independent Set in Trees

Maximum Weight Independent Set Problem

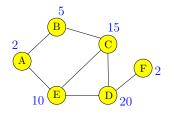
Input Graph G = (V, E) and weights $w(v) \ge 0$ for each $v \in V$ Goal Find maximum weight independent set in G



Maximum weight independent set in above graph: {B, D}

Maximum Weight Independent Set Problem

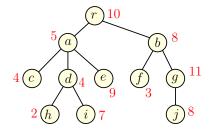
Input Graph G = (V, E) and weights $w(v) \ge 0$ for each $v \in V$ Goal Find maximum weight independent set in G



Maximum weight independent set in above graph: {B, D}

Maximum Weight Independent Set in a Tree

Input Tree T = (V, E) and weights $w(v) \ge 0$ for each $v \in V$ Goal Find maximum weight independent set in T



Maximum weight independent set in above tree: ??

For an arbitrary graph **G**:

- 1. Number vertices as $\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_n}$
- 2. Find recursively optimum solutions without $\mathbf{v_n}$ (recurse on $\mathbf{G} \mathbf{v_n}$) and with $\mathbf{v_n}$ (recurse on $\mathbf{G} \mathbf{v_n} \mathbf{N}(\mathbf{v_n})$ & include $\mathbf{v_n}$).
- 3. Saw that if graph **G** is arbitrary there was no good ordering that resulted in a small number of subproblems.

What about a tree? Natural candidate for \mathbf{v}_n is root \mathbf{r} of \mathbf{T} ?

For an arbitrary graph **G**:

- 1. Number vertices as $\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_n}$
- 2. Find recursively optimum solutions without $\mathbf{v_n}$ (recurse on $\mathbf{G} \mathbf{v_n}$) and with $\mathbf{v_n}$ (recurse on $\mathbf{G} \mathbf{v_n} \mathbf{N}(\mathbf{v_n})$ & include $\mathbf{v_n}$).
- 3. Saw that if graph **G** is arbitrary there was no good ordering that resulted in a small number of subproblems.

What about a tree? Natural candidate for \mathbf{v}_n is root \mathbf{r} of \mathbf{T} ?

For an arbitrary graph **G**:

- 1. Number vertices as $\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_n}$
- 2. Find recursively optimum solutions without $\mathbf{v_n}$ (recurse on $\mathbf{G} \mathbf{v_n}$) and with $\mathbf{v_n}$ (recurse on $\mathbf{G} \mathbf{v_n} \mathbf{N}(\mathbf{v_n})$ & include $\mathbf{v_n}$).
- 3. Saw that if graph **G** is arbitrary there was no good ordering that resulted in a small number of subproblems.

What about a tree? Natural candidate for \mathbf{v}_n is root \mathbf{r} of \mathbf{T} ?

Natural candidate for $\mathbf{v_n}$ is root \mathbf{r} of \mathbf{T} ? Let \mathcal{O} be an optimum solution to the whole problem.

Case $\mathbf{r} \not\in \mathcal{O}$: Then \mathcal{O} contains an optimum solution for each subtree of \mathbf{T} hanging at a child of \mathbf{r} .

Case $r \in \mathcal{O}$: None of the children of r can be in \mathcal{O} . $\mathcal{O} - \{r\}$ contains an optimum solution for each subtree of T hanging at a grandchild of r.

Subproblems? Subtrees of **T** rooted at nodes in **T**.

Natural candidate for $\mathbf{v_n}$ is root \mathbf{r} of \mathbf{T} ? Let \mathcal{O} be an optimum solution to the whole problem.

Case $\mathbf{r} \not\in \mathcal{O}$: Then \mathcal{O} contains an optimum solution for each subtree of \mathbf{T} hanging at a child of \mathbf{r} .

Case $r \in \mathcal{O}$: None of the children of r can be in \mathcal{O} . $\mathcal{O} - \{r\}$ contains an optimum solution for each subtree of T hanging at a grandchild of r.

Subproblems? Subtrees of T rooted at nodes in T

Natural candidate for $\mathbf{v_n}$ is root \mathbf{r} of \mathbf{T} ? Let \mathcal{O} be an optimum solution to the whole problem.

Case $\mathbf{r} \not\in \mathcal{O}$: Then \mathcal{O} contains an optimum solution for each subtree of \mathbf{T} hanging at a child of \mathbf{r} .

Case $r \in \mathcal{O}$: None of the children of r can be in \mathcal{O} . $\mathcal{O} - \{r\}$ contains an optimum solution for each subtree of T hanging at a grandchild of r.

Subproblems? Subtrees of **T** rooted at nodes in **T**.

Natural candidate for $\mathbf{v_n}$ is root \mathbf{r} of \mathbf{T} ? Let \mathcal{O} be an optimum solution to the whole problem.

Case $\mathbf{r} \not\in \mathcal{O}$: Then \mathcal{O} contains an optimum solution for each subtree of \mathbf{T} hanging at a child of \mathbf{r} .

Case $r \in \mathcal{O}$: None of the children of r can be in \mathcal{O} . $\mathcal{O} - \{r\}$ contains an optimum solution for each subtree of T hanging at a grandchild of r.

Subproblems? Subtrees of **T** rooted at nodes in **T**.

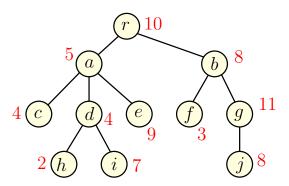
Natural candidate for $\mathbf{v_n}$ is root \mathbf{r} of \mathbf{T} ? Let \mathcal{O} be an optimum solution to the whole problem.

Case $\mathbf{r} \not\in \mathcal{O}$: Then \mathcal{O} contains an optimum solution for each subtree of \mathbf{T} hanging at a child of \mathbf{r} .

Case $r \in \mathcal{O}$: None of the children of r can be in \mathcal{O} . $\mathcal{O} - \{r\}$ contains an optimum solution for each subtree of T hanging at a grandchild of r.

Subproblems? Subtrees of **T** rooted at nodes in **T**.

Example



A Recursive Solution

T(u): subtree of T hanging at node uOPT(u): max weighted independent set value in T(u)

$$OPT(u) = \max \begin{cases} \sum_{v \text{ child of } u} OPT(v), \\ w(u) + \sum_{v \text{ grandchild of } u} OPT(v) \end{cases}$$

A Recursive Solution

T(u): subtree of T hanging at node u

OPT(u): max weighted independent set value in T(u)

$$OPT(u) = \max \begin{cases} \sum_{v \text{ child of } u} OPT(v), \\ w(u) + \sum_{v \text{ grandchild of } u} OPT(v) \end{cases}$$

- 1. Compute **OPT(u)** bottom up. To evaluate **OPT(u)** need to have computed values of all children and grandchildren of **u**
- 2. What is an ordering of nodes of a tree **T** to achieve above? Post-order traversal of a tree.

- 1. Compute **OPT(u)** bottom up. To evaluate **OPT(u)** need to have computed values of all children and grandchildren of **u**
- 2. What is an ordering of nodes of a tree **T** to achieve above? Post-order traversal of a tree.

```
\begin{split} & \text{MIS-Tree}(T): \\ & \text{Let } v_1, v_2, \dots, v_n \text{ be a post-order traversal of nodes of } T \\ & \text{for } i = 1 \text{ to } n \text{ do} \\ & M[v_i] = \text{max} \left( \begin{array}{c} \sum_{v_j \text{ child of } v_i} M[v_j], \\ w(v_i) + \sum_{v_j \text{ grandchild of } v_i} M[v_j] \end{array} \right) \\ & \text{return } M[v_n] \text{ (* Note: } v_n \text{ is the root of } T \text{ *)} \end{split}
```

- 1. Naive bound: $O(n^2)$ since each $M[v_i]$ evaluation may take O(n) time and there are n evaluations.
- 2. Better bound: O(n). A value $M[v_j]$ is accessed only by its parent and grand parent.

```
\begin{split} \text{MIS-Tree}(T): \\ \text{Let } v_1, v_2, \dots, v_n \text{ be a post-order traversal of nodes of } T \\ \text{for } i = 1 \text{ to } n \text{ do} \\ M[v_i] &= \text{max} \left( \begin{array}{c} \sum_{v_j \text{ child of } v_i} M[v_j], \\ w(v_i) + \sum_{v_j \text{ grandchild of } v_i} M[v_j] \end{array} \right) \\ \text{return } M[v_n] \text{ (* Note: } v_n \text{ is the root of } T \text{ *)} \end{split}
```

Space: O(n) to store the value at each node of T

- 1. Naive bound: $O(n^2)$ since each $M[v_i]$ evaluation may take O(n) time and there are n evaluations.
- 2. Better bound: O(n). A value $M[v_j]$ is accessed only by its parent and grand parent.

```
\begin{split} \text{MIS-Tree}(T): \\ \text{Let } v_1, v_2, \dots, v_n \text{ be a post-order traversal of nodes of } T \\ \text{for } i = 1 \text{ to } n \text{ do} \\ M[v_i] &= \text{max} \left( \begin{array}{c} \sum_{v_j \text{ child of } v_i} M[v_j], \\ w(v_i) + \sum_{v_j \text{ grandchild of } v_i} M[v_j] \end{array} \right) \\ \text{return } M[v_n] \text{ (* Note: } v_n \text{ is the root of } T \text{ *)} \end{split}
```

- 1. Naive bound: $O(n^2)$ since each $M[v_i]$ evaluation may take O(n) time and there are n evaluations.
- 2. Better bound: O(n). A value $M[v_j]$ is accessed only by its parent and grand parent.

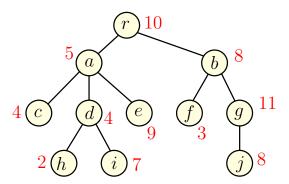
```
\begin{split} & \text{MIS-Tree}(T): \\ & \text{Let } v_1, v_2, \dots, v_n \text{ be a post-order traversal of nodes of } T \\ & \text{for } i = 1 \text{ to } n \text{ do} \\ & M[v_i] = \text{max} \left( \begin{array}{c} \sum_{v_j \text{ child of } v_i} M[v_j], \\ w(v_i) + \sum_{v_j \text{ grandchild of } v_i} M[v_j] \end{array} \right) \\ & \text{return } M[v_n] \text{ (* Note: } v_n \text{ is the root of } T \text{ *)} \end{split}
```

- 1. Naive bound: $O(n^2)$ since each $M[v_i]$ evaluation may take O(n) time and there are n evaluations.
- 2. Better bound: O(n). A value $M[v_j]$ is accessed only by its parent and grand parent.

```
\begin{split} \text{MIS-Tree}(T): \\ \text{Let } v_1, v_2, \dots, v_n \text{ be a post-order traversal of nodes of } T \\ \text{for } i = 1 \text{ to } n \text{ do} \\ M[v_i] &= \text{max} \left( \begin{array}{c} \sum_{v_j \text{ child of } v_i} M[v_j], \\ w(v_i) + \sum_{v_j \text{ grandchild of } v_i} M[v_j] \end{array} \right) \\ \text{return } M[v_n] \text{ (* Note: } v_n \text{ is the root of } T \text{ *)} \end{split}
```

- 1. Naive bound: $O(n^2)$ since each $M[v_i]$ evaluation may take O(n) time and there are n evaluations.
- 2. Better bound: O(n). A value $M[v_j]$ is accessed only by its parent and grand parent.

Example



Part III

Context free grammars: The CYK Algorithm

Parsing

We saw regular languages and context free languages.

Most programming languages are specified via context-free grammars. Why?

- ► CFLs are sufficiently expressive to support what is needed.
- ▶ At the same time one can "efficiently" solve the parsing problem: given a string/program w, is it a valid program according to the CFG specification of the programming language?

CFG specification for C

```
<relational-expression> ::= <shift-expression>
                            <relational-expression> < <shift-expression>
                            <relational-expression> > <shift-expression>
                            <relational-expression> <= <shift-expression>
                            <relational-expression> >= <shift-expression>
<shift-expression> ::= <additive-expression>
                       <shift-expression> << <additive-expression>
                       <shift-expression> >> <additive-expression>
<additive-expression> ::= <multiplicative-expression>
                          <additive-expression> + <multiplicative-expression>
                          <additive-expression> - <multiplicative-expression>
<multiplicative-expression> ::= <cast-expression>
                                <multiplicative-expression> * <cast-expression>
                                <multiplicative-expression> / <cast-expression>
                                <multiplicative-expression> % <cast-expression>
<cast-expression> ::= <unary-expression>
                      ( <type-name> ) <cast-expression>
<unary-expression> ::= <postfix-expression>
                       ++ <unary-expression>
                       -- <unary-expression>
                       <unary-operator> <cast-expression>
                       sizeof <unary-expression>
                       sizeof <type-name>
<postfix-expression> ::= <primary-expression>
                         <postfix-expression> [ <expression> ]
                         <postfix-expression> ( {<assignment-expression>}* )
```

Algorithmic Problem

Given a CFG G = (V, T, P, S) and a string $w \in T^*$, is $w \in L(G)$?

- ► That is, does **S** derive **w**?
- ► Equivalently, is there a parse tree for w?

Simplifying assumption: G is in Chomsky Normal Form (CNF)

- Productions are all of the form $\mathbf{A} \to \mathbf{BC}$ or $\mathbf{A} \to \mathbf{a}$. If $\epsilon \in \mathbf{L}$ then $\mathbf{S} \to \epsilon$ is also allowed. (This is the only place in the grammar that has an ϵ .)
- ▶ Every CFG **G** can be converted into CNF form via an efficient algorithm
- Advantage: parse tree of constant degree.

Algorithmic Problem

Given a CFG G = (V, T, P, S) and a string $w \in T^*$, is $w \in L(G)$?

- ► That is, does **S** derive **w**?
- ► Equivalently, is there a parse tree for w?

Simplifying assumption: G is in Chomsky Normal Form (CNF)

- ▶ Productions are all of the form $A \to BC$ or $A \to a$. If $\epsilon \in L$ then $S \to \epsilon$ is also allowed. (This is the only place in the grammar that has an ϵ .)
- ▶ Every CFG **G** can be converted into CNF form via an efficient algorithm
- ► Advantage: parse tree of constant degree.

Example

```
\begin{array}{l} \mathbf{S} \rightarrow \epsilon \mid \mathbf{AB} \mid \mathbf{XB} \\ \mathbf{Y} \rightarrow \mathbf{AB} \mid \mathbf{XB} \\ \mathbf{X} \rightarrow \mathbf{AY} \\ \mathbf{A} \rightarrow \mathbf{0} \\ \mathbf{B} \rightarrow \mathbf{1} \end{array}
```

Question:

- ► Is **000111** in **L(G)**?
- ► Is **00011** in **L(G)**?

Towards Recursive Algorithm

Assume **G** is a CNF grammar.

S derives **w** iff one of the following holds:

- $|\mathbf{w}| = 1$ and $S \rightarrow \mathbf{w}$ is a rule in P
- ▶ |w| > 1 and there is a rule $S \to AB$ and a split w = uv with $|u|, |v| \ge 1$ such that A derives u and B derives v

Observation: Subproblems generated require us to know if some non-terminal **A** will derive a substring of **w**.

Towards Recursive Algorithm

Assume **G** is a CNF grammar.

S derives **w** iff one of the following holds:

- $|\mathbf{w}| = 1$ and $S \rightarrow \mathbf{w}$ is a rule in P
- ▶ |w| > 1 and there is a rule $S \to AB$ and a split w = uv with $|u|, |v| \ge 1$ such that A derives u and B derives v

Observation: Subproblems generated require us to know if some non-terminal $\bf A$ will derive a substring of $\bf w$.

Recursive solution

- 1. Input: $\mathbf{w} = \mathbf{w_1}\mathbf{w_2} \dots \mathbf{w_n}$
- 2. Assume **r** non-terminals in **G**: R_1, \ldots, R_r .
- 3. R₁: Start symbol.
- 4. $f(\ell, s, b)$: TRUE \iff $w_s w_{s+1} \dots, w_{s+\ell-1} \in L(R_b)$. = Substring w starting at pos ℓ of length s is deriveable by R_b .
- 5. Recursive formula: f(1,s,a) is 1 iff $\left(R_a \to w_s\right) \in G$.
- 6. For $\ell > 1$:

$$f(\ell, s, a) = \bigvee_{p=1}^{\ell-1} \bigvee_{(R_a \to R_b R_c) \in G} (f(p, s, b) \land f(\ell - p, s + p, c))$$

7. Output: $w \in L(G) \iff f(n, 1, 1) = 1$.

Recursive solution

- 1. Input: $\mathbf{w} = \mathbf{w_1}\mathbf{w_2} \dots \mathbf{w_n}$
- 2. Assume **r** non-terminals in **G**: R_1, \ldots, R_r .
- 3. R₁: Start symbol.
- 4. $f(\ell, s, b)$: TRUE \iff $w_s w_{s+1} \dots, w_{s+\ell-1} \in L(R_b)$. = Substring w starting at pos ℓ of length s is deriveable by R_b .
- 5. Recursive formula: f(1,s,a) is 1 iff $(R_a \rightarrow w_s) \in G$.
- 6. For $\ell > 1$:

$$f(\ell, s, a) = \bigvee_{p=1}^{\ell-1} \bigvee_{(R_a \to R_b R_c) \in G} (f(p, s, b) \land f(\ell - p, s + p, c))$$

7. Output: $w \in L(G) \iff f(n, 1, 1) = 1$.

Analysis

Assume $G = \{R_1, R_2, \dots, R_r\}$ with start symbol R_1

- ► Number of subproblems: O(rn²)
- ► Space: O(rn²)
- ▶ Time to evaluate a subproblem from previous ones: O(|P|n) where P is set of rules
- ▶ Total time: $O(|P|rn^3)$ which is polynomial in both |w| and |G|. For fixed G the run time is cubic in input string length.
- ▶ Running time can be improved to $O(n^3|P|)$.
- Not practical for most programming languages. Most languages assume restricted forms of CFGs that enable more efficient parsing algorithms.

CYK Algorithm

```
Input string: X = x_1 \dots x_n.
Input grammar G: r nonterminal symbols R_1...R_r, R_1 start symbol.
P[n][n][r]: Array of booleans. Initialize all to FALSE
for s = 1 to n do
    for each unit production R_v \to x_s do
        P[1][s][v] \leftarrow TRUE
for \ell = 2 to n do // Length of span
    for s = 1 to n - \ell + 1 do // Start of span
        for p = 1 to \ell - 1 do // Partition of span
             for all (R_a \rightarrow R_b R_c) \in G do
                 if P[p][s][b] and P[I-p][s+p][c] then
                      P[I][s][a] \leftarrow TRUE
if P[n][1][1] is TRUE then
    return "X is member of language"
else
    return ''X is not member of language''
```

Example

```
\begin{array}{l} \mathbf{S} \rightarrow \epsilon \mid \mathbf{AB} \mid \mathbf{XB} \\ \mathbf{Y} \rightarrow \mathbf{AB} \mid \mathbf{XB} \\ \mathbf{X} \rightarrow \mathbf{AY} \\ \mathbf{A} \rightarrow \mathbf{0} \\ \mathbf{B} \rightarrow \mathbf{1} \end{array}
```

Question:

- ► Is **000111** in **L(G)**?
- ► Is **00011** in **L(G)**?

Order of evaluation for iterative algorithm: increasing order of substring length.

Example

 $\begin{array}{l} \mathbf{S} \rightarrow \epsilon \mid \mathbf{AB} \mid \mathbf{XB} \\ \mathbf{Y} \rightarrow \mathbf{AB} \mid \mathbf{XB} \end{array}$

 $\mathbf{X} \to \mathbf{AY}$

 $\textbf{A} \rightarrow \textbf{0}$

 $\textbf{B} \rightarrow \textbf{1}$

Takeaway Points

- 1. Dynamic programming is based on finding a recursive way to solve the problem. Need a recursion that generates a small number of subproblems.
- Given a recursive algorithm there is a natural DAG associated with the subproblems that are generated for given instance; this is the dependency graph. An iterative algorithm simply evaluates the subproblems in some topological sort of this DAG.
- 3. The space required to evaluate the answer can be reduced in some cases by a careful examination of that dependency \overline{DAG} of the subproblems and keeping only a subset of the \overline{DAG} at any time.