CS/ECE 374A, Fall 2022

# Introduction to Dynamic Programming

Lecture 13 Thursday, October 6, 2022

LATEXed: October 13, 2022 14:18

CS/ECE 374A, Fall 2022

# 13.1

Recursion and Memoization

CS/ECE 374A, Fall 2022

# 13.1.1

# Fibonacci Numbers

#### Fibonacci Numbers

Fibonacci numbers defined by recurrence:

$$F(n) = F(n-1) + F(n-2)$$
 and  $F(0) = 0, F(1) = 1$ .

These numbers have many interesting properties. A journal The Fibonacci Quarterly!

- 1. Binet's formula:  $F(n) = \frac{\varphi^n (1-\varphi)^n}{\sqrt{5}} \approx \frac{1.618^n (-0.618)^n}{\sqrt{5}} \approx \frac{1.618^n}{\sqrt{5}}$   $\varphi$  is the golden ratio  $(1+\sqrt{5})/2 \simeq 1.618$ .
- 2.  $\lim_{n\to\infty} F(n+1)/F(n) = \varphi$

#### Fibonacci Numbers

Fibonacci numbers defined by recurrence:

$$F(n) = F(n-1) + F(n-2)$$
 and  $F(0) = 0, F(1) = 1$ .

These numbers have many interesting properties. A journal The Fibonacci Quarterly!

- 1. Binet's formula:  $F(n) = \frac{\varphi^n (1-\varphi)^n}{\sqrt{5}} \approx \frac{1.618^n (-0.618)^n}{\sqrt{5}} \approx \frac{1.618^n}{\sqrt{5}}$   $\varphi$  is the golden ratio  $(1+\sqrt{5})/2 \simeq 1.618$ .
- 2.  $\lim_{n\to\infty} F(n+1)/F(n) = \varphi$

## How many bits?

Consider the nth Fibonacci number F(n). Writing the number F(n) in base 2 requires

- (A)  $\Theta(n^2)$  bits.
- (B)  $\Theta(n)$  bits.
- (C)  $\Theta(\log n)$  bits.
- (D)  $\Theta(\log \log n)$  bits.

Question: Given  $\mathbf{n}$ , compute  $\mathbf{F}(\mathbf{n})$ .

```
\begin{aligned} & \text{Fib}(n): \\ & \text{if } (n=0) \\ & \text{return } 0 \\ & \text{else if } (n=1) \\ & \text{return } 1 \\ & \text{else} \\ & \text{return } \text{Fib}(n-1) \ + \ \text{Fib}(n-2) \end{aligned}
```

Running time? Let T(n) be the number of additions in Fib(n).

$$T(n) = T(n-1) + T(n-2) + 1$$
 and  $T(0) = T(1) = 0$ 

Question: Given n, compute F(n).

```
\begin{aligned} & \text{Fib}(n): \\ & \text{if } (n=0) \\ & & \text{return 0} \\ & \text{else if } (n=1) \\ & & \text{return 1} \\ & \text{else} \\ & & \text{return Fib}(n-1) + \text{Fib}(n-2) \end{aligned}
```

Running time? Let T(n) be the number of additions in Fib(n).

$$T(n) = T(n-1) + T(n-2) + 1$$
 and  $T(0) = T(1) = 0$ 

Question: Given  $\mathbf{n}$ , compute  $\mathbf{F}(\mathbf{n})$ .

```
\begin{aligned} & \text{Fib}(\textbf{n}) \colon \\ & \text{if } (\textbf{n} = \textbf{0}) \\ & & \text{return } \textbf{0} \\ & \text{else if } (\textbf{n} = \textbf{1}) \\ & & \text{return } \textbf{1} \\ & \text{else} \\ & & \text{return } \textbf{Fib}(\textbf{n} - \textbf{1}) \ + \ \textbf{Fib}(\textbf{n} - \textbf{2}) \end{aligned}
```

Running time? Let T(n) be the number of additions in Fib(n).

$$T(n) = T(n-1) + T(n-2) + 1$$
 and  $T(0) = T(1) = 0$ 

Question: Given n, compute F(n).

```
\begin{aligned} & \text{Fib}(n): \\ & \text{if } (n=0) \\ & & \text{return 0} \\ & \text{else if } (n=1) \\ & & \text{return 1} \\ & \text{else} \\ & & \text{return Fib}(n-1) + \text{Fib}(n-2) \end{aligned}
```

Running time? Let T(n) be the number of additions in Fib(n).

$$T(n) = T(n-1) + T(n-2) + 1$$
 and  $T(0) = T(1) = 0$ 

Roughly same as F(n):  $T(n) = \Theta(\varphi^n)$ .

The number of additions is exponential in  $\mathbf{n}$ . Can we do better?

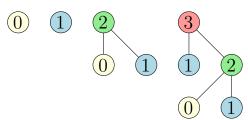


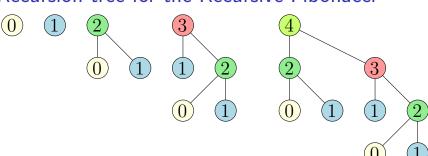


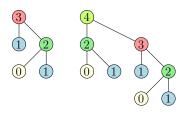


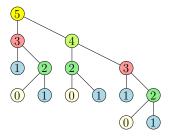


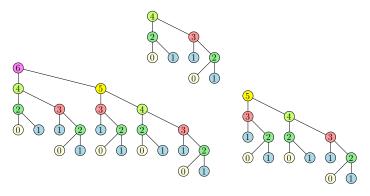


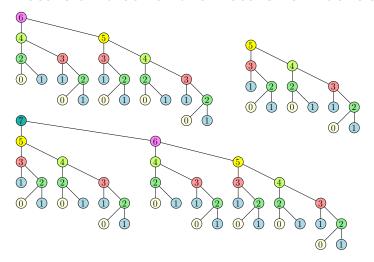












## An iterative algorithm for Fibonacci numbers

```
Fiblter(n):
    if (n = 0) then
        return 0
    if (n = 1) then
        return 1
    F[0] = 0
    F[1] = 1
    for i = 2 to n do
        F[i] = F[i - 1] + F[i - 2]
    return F[n]
```

What is the running time of the algorithm? O(n) additions.

## An iterative algorithm for Fibonacci numbers

```
Fiblter(n):
    if (n = 0) then
        return 0
    if (n = 1) then
        return 1
    F[0] = 0
    F[1] = 1
    for i = 2 to n do
        F[i] = F[i - 1] + F[i - 2]
    return F[n]
```

What is the running time of the algorithm? O(n) additions.

#### An iterative algorithm for Fibonacci numbers

```
Fiblter(n):
    if (n = 0) then
        return 0
    if (n = 1) then
        return 1
    F[0] = 0
    F[1] = 1
    for i = 2 to n do
        F[i] = F[i - 1] + F[i - 2]
    return F[n]
```

What is the running time of the algorithm? O(n) additions.

#### What is the difference?

- 1. Recursive algorithm is computing the same numbers again and again.
- 2. Iterative algorithm is storing computed values and building bottom up the final value. Memoization.

Finding a recursion that can be effectively/efficiently memoized.

Leads to polynomial time algorithm if number of sub-problems is polynomial in input size.

#### What is the difference?

- 1. Recursive algorithm is computing the same numbers again and again.
- 2. Iterative algorithm is storing computed values and building bottom up the final value. Memoization.

Finding a recursion that can be effectively/efficiently memoized.

Leads to polynomial time algorithm if number of sub-problems is polynomial in input size.

#### What is the difference?

- 1. Recursive algorithm is computing the same numbers again and again.
- 2. Iterative algorithm is storing computed values and building bottom up the final value. Memoization.

#### Dynamic Programming:

Finding a recursion that can be effectively/efficiently memoized.

Leads to polynomial time algorithm if number of sub-problems is polynomial in input size.

CS/ECE 374A, Fall 2022

# 13.1.2

Automatic/implicit memoization

Can we convert recursive algorithm into an efficient algorithm without explicitly doing an iterative algorithm?

```
\begin{aligned} &\text{Fib}(\textbf{n}):\\ &\text{if } (\textbf{n}=\textbf{0})\\ &\text{return } \textbf{0}\\ &\text{if } (\textbf{n}=\textbf{1})\\ &\text{return } \textbf{1}\\ &\text{if } (\text{Fib}(\textbf{n}) \text{ was previously computed})\\ &\text{return stored value of Fib}(\textbf{n})\\ &\text{else}\\ &\text{return } \text{Fib}(\textbf{n}-\textbf{1}) \text{ + Fib}(\textbf{n}-\textbf{2}) \end{aligned}
```

How do we keep track of previously computed values? Two methods: explicitly and implicitly (via data structure)

Can we convert recursive algorithm into an efficient algorithm without explicitly doing an iterative algorithm?

```
\begin{aligned} & \text{Fib}(\textbf{n}): \\ & \text{if } (\textbf{n} = \textbf{0}) \\ & \text{return } \textbf{0} \\ & \text{if } (\textbf{n} = \textbf{1}) \\ & \text{return } \textbf{1} \\ & \text{if } (\text{Fib}(\textbf{n}) \text{ was previously computed}) \\ & \text{return stored value of Fib}(\textbf{n}) \\ & \text{else} \\ & \text{return } \text{Fib}(\textbf{n} - \textbf{1}) + \text{Fib}(\textbf{n} - \textbf{2}) \end{aligned}
```

How do we keep track of previously computed values? Two methods: explicitly and implicitly (via data structure)

Can we convert recursive algorithm into an efficient algorithm without explicitly doing an iterative algorithm?

```
\begin{aligned} & \text{Fib}(\textbf{n}): \\ & \text{if } (\textbf{n} = \textbf{0}) \\ & \text{return } \textbf{0} \\ & \text{if } (\textbf{n} = \textbf{1}) \\ & \text{return } \textbf{1} \\ & \text{if } (\text{Fib}(\textbf{n}) \text{ was previously computed}) \\ & \text{return stored value of Fib}(\textbf{n}) \\ & \text{else} \\ & \text{return } \text{Fib}(\textbf{n} - \textbf{1}) + \text{Fib}(\textbf{n} - \textbf{2}) \end{aligned}
```

How do we keep track of previously computed values?

Two methods: explicitly and implicitly (via data structure)

Can we convert recursive algorithm into an efficient algorithm without explicitly doing an iterative algorithm?

```
\begin{aligned} & \text{Fib}(\textbf{n}): \\ & \text{if } (\textbf{n} = \textbf{0}) \\ & \text{return } \textbf{0} \\ & \text{if } (\textbf{n} = \textbf{1}) \\ & \text{return } \textbf{1} \\ & \text{if } (\textbf{Fib}(\textbf{n}) \text{ was previously computed}) \\ & \text{return stored value of Fib}(\textbf{n}) \\ & \text{else} \\ & \text{return } \textbf{Fib}(\textbf{n} - \textbf{1}) + \textbf{Fib}(\textbf{n} - \textbf{2}) \end{aligned}
```

How do we keep track of previously computed values? Two methods: explicitly and implicitly (via data structure)

# Automatic memoization in python3...

```
#! /bin/python3
import functools
import time
@functools.cache
def binom mem(n, i):
   if ( i <= 0 ):
        return 1
    if ( i >= n ):
        return 1
    return binom mem(n-1.i-1) + binom mem(n-1.i)
def binom reg(n, i):
   if ( i <= 0 ):
        return 1
   if ( i >= n ):
        return 1
    return binom req(n-1,i-1) + binom req(n-1,i)
start = time.time()
print( binom mem( 400, 200) )
end = time.time()
print ( "Computing binom (400, 200) with memozation: ", end - start)
start = time.time()
print( "binom(30, 15):", binom reg(30, 15) )
end = time.time()
print ( "Computing binom (30, 15) with NO memozation: ", end - start)
```

#### Running it:

```
Computing binom(400, 200) with memozation: 0.012813568115234375
binom(30, 15): 155117520
Computing binom(30, 15) with NO memozation: 20.24474811553955
```

## Automatic implicit memoization

Initialize a (dynamic) dictionary data structure **D** to empty

```
\begin{aligned} &\text{Fib}(n):\\ &\text{ if } &(n=0)\\ &\text{ return } 0\\ &\text{ if } &(n=1)\\ &\text{ return } 1\\ &\text{ if } &(n\text{ is already in } D)\\ &\text{ return } &\text{ value stored with } n\text{ in } D\\ &\text{ val } &\Leftarrow &\text{Fib}(n-1) + &\text{Fib}(n-2)\\ &\text{ Store } &(n,\text{val})\text{ in } D\\ &\text{ return } &\text{ val} \end{aligned}
```

Use hash-table or a map to remember which values were already computed.

# Explicit memoization (not automatic)

- 1. Initialize table/array M of size n: M[i] = -1 for i = 0, ..., n.
- 2. Resulting code

```
\begin{aligned} &\text{Fib}(n):\\ &\text{ if } (n=0)\\ &\text{ return } 0\\ &\text{ if } (n=1)\\ &\text{ return } 1\\ &\text{ if } (M[n]\neq -1) \text{ } // \text{ } M[n]: \text{ stored value of } \text{Fib}(n)\\ &\text{ return } M[n]\\ &\text{ } M[n] \Leftarrow \text{Fib}(n-1) + \text{Fib}(n-2)\\ &\text{ return } M[n] \end{aligned}
```

3. Need to know upfront the number of subproblems to allocate memory

# Explicit memoization (not automatic)

- 1. Initialize table/array M of size n: M[i] = -1 for i = 0, ..., n.
- 2. Resulting code:

```
\begin{aligned} &\text{Fib}(n):\\ &\text{ if } (n=0)\\ &\text{ return } 0\\ &\text{ if } (n=1)\\ &\text{ return } 1\\ &\text{ if } (M[n]\neq -1) \text{ } // \text{ } M[n]: \text{ stored value of } \text{Fib}(n)\\ &\text{ return } M[n]\\ &\text{ } M[n] \Leftarrow \text{Fib}(n-1) + \text{Fib}(n-2)\\ &\text{ return } M[n] \end{aligned}
```

Need to know upfront the number of subproblems to allocate memory

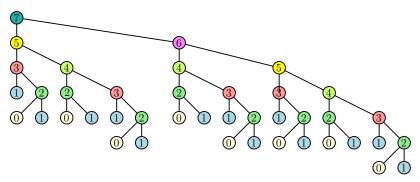
# Explicit memoization (not automatic)

- 1. Initialize table/array M of size n: M[i] = -1 for i = 0, ..., n.
- 2. Resulting code:

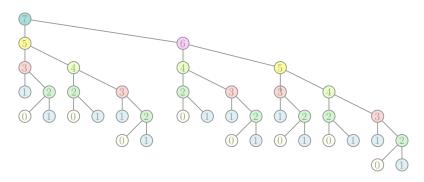
```
\begin{aligned} &\text{Fib}(n):\\ &\text{ if } (n=0)\\ &\text{ return } 0\\ &\text{ if } (n=1)\\ &\text{ return } 1\\ &\text{ if } (M[n]\neq -1) \text{ } // \text{ } M[n]: \text{ stored value of } \text{Fib}(n)\\ &\text{ return } M[n]\\ &\text{ } M[n] \Leftarrow \text{Fib}(n-1) + \text{Fib}(n-2)\\ &\text{ return } M[n] \end{aligned}
```

3. Need to know upfront the number of subproblems to allocate memory.

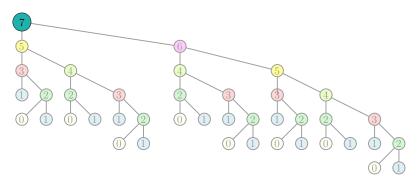
#### Recursion tree for the memoized Fib...

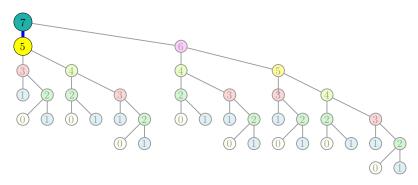


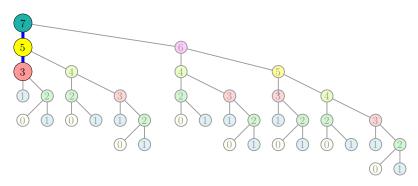
#### Recursion tree for the memoized Fib...

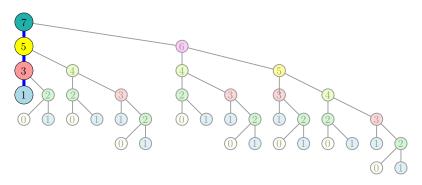


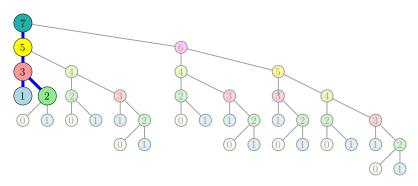
#### Recursion tree for the memoized Fib...

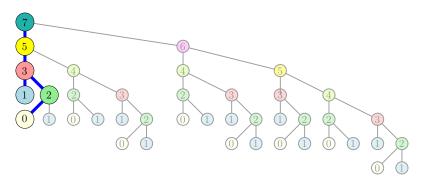


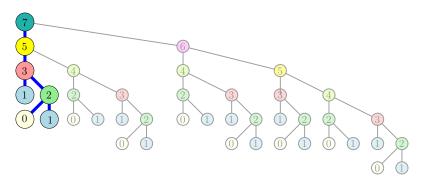


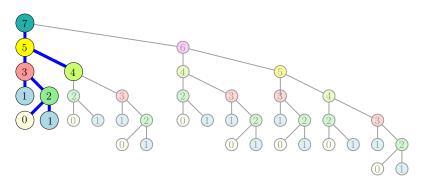


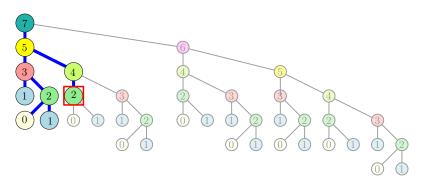


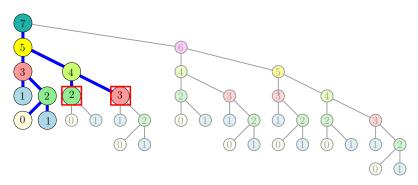


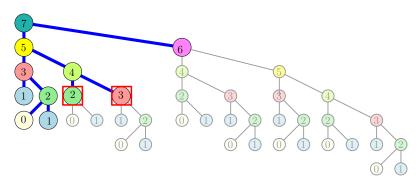


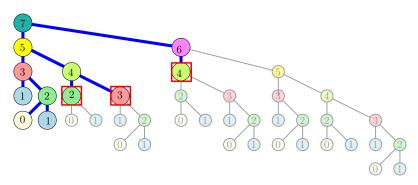


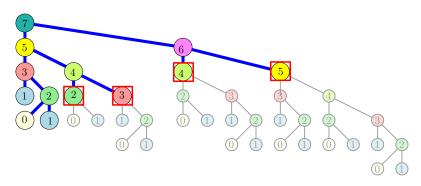












#### **Automatic Memoization**

1. Recursive version:

$$f(x_1, x_2, \dots, x_d)$$
:
CODE

2. Recursive version with memoization:

```
\begin{array}{c} g(x_1,x_2,\ldots,x_d)\colon\\ &\text{if $f$ already computed for $(x_1,x_2,\ldots,x_d)$ then}\\ &\text{$return$ value already computed}\\ &\text{NEW\_CODE} \end{array}
```

- NEW\_CODE:
  - 3.1 Replaces any "return  $\alpha$ " with
  - 3.2 Remember " $f(x_1, ..., x_d) = \alpha$ "; return  $\alpha$ .

#### Automatic Memoization

1. Recursive version:

$$f(x_1, x_2, \dots, x_d)$$
: CODE

2. Recursive version with memoization:

```
\begin{array}{c} g(x_1,x_2,\ldots,x_d)\colon\\ &\text{if } f \text{ already computed for } (x_1,x_2,\ldots,x_d) \text{ then}\\ &\text{ } return \text{ } \text{value already computed}\\ &\text{NEW\_CODE} \end{array}
```

- 3. NEW\_CODE:
  - 3.1 Replaces any "return  $\alpha$ " with
  - 3.2 Remember " $f(x_1, ..., x_d) = \alpha$ "; return  $\alpha$ .

#### **Automatic Memoization**

1. Recursive version:

$$f(x_1, x_2, \dots, x_d)$$
:

CODE

2. Recursive version with memoization:

```
\begin{array}{c} g(x_1,x_2,\ldots,x_d)\colon\\ &\text{if } f \text{ already computed for } (x_1,x_2,\ldots,x_d) \text{ then}\\ &\text{ } return \text{ } \text{value already computed}\\ &\text{ } \text{NEW\_CODE} \end{array}
```

- NEW\_CODE:
  - 3.1 Replaces any "**return**  $\alpha$ " with
  - 3.2 Remember " $f(x_1, ..., x_d) = \alpha$ "; return  $\alpha$ .

- 1. Explicit memoization (on the way to iterative algorithm) preferred:
  - 1.1 analyze problem ahead of time
  - 1.2 Allows for efficient memory allocation and access.
- 2. Implicit (automatic) memoization:
  - 2.1 problem structure or algorithm is not well understood
  - 2.2 Need to pay overhead of data-structure.
  - 2.3 Functional languages (e.g., LISP) automatically do memoization, usually via hashing based dictionaries.

- 1. Explicit memoization (on the way to iterative algorithm) preferred:
  - 1.1 analyze problem ahead of time
  - 1.2 Allows for efficient memory allocation and access.
- 2. Implicit (automatic) memoization:
  - 2.1 problem structure or algorithm is not well understood.
  - 2.2 Need to pay overhead of data-structure.
  - 2.3 Functional languages (e.g., LISP) automatically do memoization, usually via hashing based dictionaries.

- 1. Explicit memoization (on the way to iterative algorithm) preferred:
  - 1.1 analyze problem ahead of time
  - 1.2 Allows for efficient memory allocation and access.
- 2. Implicit (automatic) memoization:
  - 2.1 problem structure or algorithm is not well understood.
  - 2.2 Need to pay overhead of data-structure.
  - 2.3 Functional languages (e.g., LISP) automatically do memoization, usually via hashing based dictionaries.

- 1. Explicit memoization (on the way to iterative algorithm) preferred:
  - 1.1 analyze problem ahead of time
  - 1.2 Allows for efficient memory allocation and access.
- 2. Implicit (automatic) memoization:
  - 2.1 problem structure or algorithm is not well understood.
  - 2.2 Need to pay overhead of data-structure.
  - 2.3 Functional languages (e.g., LISP) automatically do memoization, usually via hashing based dictionaries.

- 1. Explicit memoization (on the way to iterative algorithm) preferred:
  - 1.1 analyze problem ahead of time
  - 1.2 Allows for efficient memory allocation and access.
- 2. Implicit (automatic) memoization:
  - 2.1 problem structure or algorithm is not well understood.
  - 2.2 Need to pay overhead of data-structure.
  - 2.3 Functional languages (e.g., LISP) automatically do memoization, usually via hashing based dictionaries.

# Explicit/implicit memoization for Fibonacci

```
\begin{split} &\text{Init:} \quad M[i] = -1, \ i = 0, \dots, n. \\ &\text{Fib}(k): \\ & \text{if } (k = 0) \\ & \text{return 0} \\ & \text{if } (k = 1) \\ & \text{return 1} \\ & \text{if } (M[k] \neq -1) \\ & \text{return } M[n] \\ & M[k] \Leftarrow \text{Fib}(k-1) + \text{Fib}(k-2) \\ & \text{return } M[k] \end{split}
```

**Explicit** memoization

```
Init dictionary D
Init:
Fib(n):
    if (n = 0)
        return 0
    if (n = 1)
        return 1
    if (n is already in D)
        return value stored with n in D
        val \Leftarrow Fib(n-1) + Fib(n-2)
    Store (n, val) in D
    return val
```

Implicit memoization

#### How many distinct calls?

How many distinct calls does binom(n,  $\lfloor n/2 \rfloor$ ) makes during its recursive execution?

- (A)  $\Theta(1)$ .
- (B)  $\Theta(n)$ .
- (C)  $\Theta(n \log n)$ .
- (D)  $\Theta(n^2)$ .
- (E)  $\Theta\left(\binom{n}{\lfloor n/2 \rfloor}\right)$ .

That is, if the algorithm calls recursively binom(17, 5) about 5000 times during the computation, we count this is a single distinct call.

#### Running time of memoized binom?

```
D: Initially an empty dictionary. 

binomM(t, b) // computes \binom{t}{b} if b = t then return 1 if b = 0 then return 0 if D[t,b] is defined then return D[t,b] D[t,b] \Leftarrow binomM(t-1,b-1) + binomM(t-1,b). return D[t,b]
```

Assuming that every arithmetic operation takes O(1) time, What is the running time of binom $M(n, \lfloor n/2 \rfloor)$ ?

- (A)  $\Theta(1)$ .
- (B)  $\Theta(n)$
- (C)  $\Theta(n^2)$ .
- (D)  $\Theta(n^3)$ .
- (E)  $\Theta\left(\binom{n}{\lfloor n/2 \rfloor}\right)$ .

## Intro. Algorithms & Models of Computation

CS/ECE 374A, Fall 2022

# 13.2

# Dynamic programming

#### Removing the recursion by filling the table in the right order

"Dynamic programming"

```
\begin{aligned} & \text{Fib}(n): \\ & \text{if } (n=0) \\ & \text{return } 0 \\ & \text{if } (n=1) \\ & \text{return } 1 \\ & \text{if } (M[n] \neq -1) \\ & \text{return } M[n] \\ & M[n] \Leftarrow \text{Fib}(n-1) + \text{Fib}(n-2) \\ & \text{return } M[n] \end{aligned}
```

```
Fiblter(n):
    if (n = 0) then
        return 0
    if (n = 1) then
        return 1
    F[0] = 0
    F[1] = 1
    for i = 2 to n do
    F[i] = F[i-1] + F[i-2]
    return F[n]
```

#### Dynamic programming: Saving space!

Saving space. Do we need an array of **n** numbers? Not really.

```
Fiblter(n):
    if (n = 0) then
        return 0
    if (n = 1) then
        return 1
    F[0] = 0
    F[1] = 1
    for i = 2 to n do
        F[i] = F[i - 1] + F[i - 2]
    return F[n]
```

```
Fiblter(n):
    if (n = 0) then
        return 0
    if (n = 1) then
        return 1
    prev2 = 0
    prev1 = 1
    for i = 2 to n do
        temp = prev1 + prev2
        prev2 = prev1
        prev1 = temp
    return prev1
```

# Dynamic programming - quick review

#### Dynamic Programming is smart recursion

- + explicit memoization
- + filling the table in right order
- + removing recursion

# Dynamic programming - quick review

#### Dynamic Programming is smart recursion

- + explicit memoization
- + filling the table in right order
- + removing recursion

# Dynamic programming - quick review

Dynamic Programming is smart recursion

- + explicit memoization
- + filling the table in right order
- + removing recursion.

**Question:** Suppose we have a recursive program foo(x) that takes an input x.

- On input of size **n** the number of <u>distinct</u> sub-problems that **foo(x)** generates is at most **A(n)**
- **foo(x)** spends at most B(n) time not counting the time for its recursive calls.

Suppose we memoize the recursion.

**Assumption:** Storing and retrieving solutions to pre-computed problems takes O(1) time.

Q: What is an upper bound on the running time of  $\underline{\text{memoized}}$  version of foo(x) if |x| = n? O(A(n)B(n)).

**Question:** Suppose we have a recursive program foo(x) that takes an input x.

- On input of size n the number of <u>distinct</u> sub-problems that foo(x) generates is at most A(n)
- **foo(x)** spends at most B(n) time not counting the time for its recursive calls.

Suppose we memoize the recursion.

**Assumption:** Storing and retrieving solutions to pre-computed problems takes O(1) time.

Q: What is an upper bound on the running time of <u>memoized</u> version of foo(x) if |x| = n? O(A(n)B(n)).

**Question:** Suppose we have a recursive program foo(x) that takes an input x.

- On input of size n the number of <u>distinct</u> sub-problems that foo(x) generates is at most A(n)
- **foo(x)** spends at most B(n) time not counting the time for its recursive calls.

Suppose we memoize the recursion.

**Assumption:** Storing and retrieving solutions to pre-computed problems takes O(1) time.

**Q:** What is an upper bound on the running time of <u>memoized</u> version of **foo(x)** if  $|\mathbf{x}| = \mathbf{n}$ ? O(A(n)B(n)).

**Question:** Suppose we have a recursive program foo(x) that takes an input x.

- On input of size n the number of <u>distinct</u> sub-problems that foo(x) generates is at most A(n)
- **foo(x)** spends at most B(n) time not counting the time for its recursive calls.

Suppose we memoize the recursion.

**Assumption:** Storing and retrieving solutions to pre-computed problems takes O(1) time.

**Q:** What is an upper bound on the running time of  $\underline{\text{memoized}}$  version of foo(x) if |x| = n? O(A(n)B(n)).

## Intro. Algorithms & Models of Computation

CS/ECE 374A, Fall 2022

# 13.2.1

Fibonacci numbers are big – corrected running time analysis

#### Back to Fibonacci Numbers

```
Fiblter(n):
    if (n = 0) then
        return 0
    if (n = 1) then
        return 1
    prev2 = 0
    prev1 = 1
    for i = 2 to n do
        temp = prev1 + prev2
        prev2 = prev1
        prev1 = temp
    return prev1
```

Is the iterative algorithm a polynomial time algorithm? Does it take O(n) time?

- input is n and hence input size is
   Θ(log n)
- output is F(n) and output size is Θ(n). Why?
- 3. Hence output size is exponential in input size so no polynomial time algorithm possible!
- Running time of iterative algorithm: Θ(n) additions but number sizes are O(n) bits long! Hence total time is O(n²), in fact Θ(n²). Why?

## Intro. Algorithms & Models of Computation

CS/ECE 374A, Fall 2022

# 13.3 Checking if a string is in L\*

Input A string  $\mathbf{w} \in \mathbf{\Sigma}^*$  and access to a language  $\mathbf{L} \subseteq \mathbf{\Sigma}^*$  via function IsInL(string x) that decides whether x is in  $\mathbf{L}$ 



Goal Decide if  $w \in L$  using IsInL(string x) as a black box sub-routine

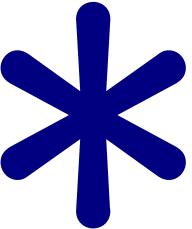
Input A string  $\mathbf{w} \in \mathbf{\Sigma}^*$  and access to a language  $\mathbf{L} \subseteq \mathbf{\Sigma}^*$  via function IsInL(string x) that decides whether x is in L



Goal Decide if  $\mathbf{w} \in \mathbf{L}$  sub-routine

using IsInL(string x) as a black box

Input A string  $\mathbf{w} \in \mathbf{\Sigma}^*$  and access to a language  $\mathbf{L} \subseteq \mathbf{\Sigma}^*$  via function IsInL(string x) that decides whether x is in L



Input A string  $\mathbf{w} \in \Sigma^*$  and access to a language  $\mathbf{L} \subseteq \Sigma^*$  via function  $\mathbf{lsInL}(\mathbf{string} \ \mathbf{x})$  that decides whether  $\mathbf{x}$  is in  $\mathbf{L}$ Goal Decide if using  $\mathbf{lsInL}(\mathbf{string} \ \mathbf{x})$  as a black box sub-routine

### Example 13.1.

Suppose L is **English** and we have a procedure to check whether a string/word is in the **English** dictionary.

- ► Is the string "isthisanenglishsentence" in **English\***?
- ► Is "stampstamp" in **English**\*?
- ► Is "zibzzzad" in **English**\*?

When is  $\mathbf{w} \in \mathbf{L}^*$ ?

```
w \in L^* \iff w \in L or if w = uv where u \in L^* and v \in L, |v| \ge 1.
```

Assume w is stored in array A[1..n]

When is  $\mathbf{w} \in \mathbf{L}^*$ ?

```
w \in L^* \iff w \in L \text{ or if } w = uv \text{ where } u \in L^* \text{ and } v \in L, |v| \ge 1.
```

Assume w is stored in array A[1..n]

When is  $\mathbf{w} \in \mathbf{L}^*$ ?

```
w \in L^* \iff w \in L or if w = uv where u \in L^* and v \in L, |v| \ge 1.
```

Assume  $\mathbf{w}$  is stored in array  $\mathbf{A}[1..n]$ 

Assume  $\mathbf{w}$  is stored in array  $\mathbf{A}[1..n]$ 

Question: How many distinct sub-problems does IsInL\*(A[1..n]) generate? O(n)

Assume w is stored in array A[1..n]

**Question:** How many distinct sub-problems does  $IsInL^*(A[1..n])$  generate? O(n)

Assume w is stored in array A[1..n]

Question: How many distinct sub-problems does  $IsInL^*(A[1..n])$  generate? O(n)

# Example

Consider string samiam

## Naming subproblems and recursive equation

After seeing that number of subproblems is O(n) we name them to help us understand the structure better.

ISL\*(i): a boolean which is 1 if A[1..i] is in L\*, 0 otherwise

Base case: ISL\*(0) = 1 interpreting A[1..0] as  $\epsilon$  Recursive relation:

```
    ISL*(i) = 1 if
    ∃j, 0 ≤ j < i s.t ISL*(j) and IsInL(A[j + 1..i])</li>
    ISL*(i) = 0 otherwise
```

ightharpoonup ISL\*(i) = 0 otherwise

Output: ISL\*(n)

## Naming subproblems and recursive equation

After seeing that number of subproblems is O(n) we name them to help us understand the structure better.

```
ISL*(i): a boolean which is 1 if A[1..i] is in L*, 0 otherwise
```

Base case: ISL\*(0) = 1 interpreting A[1..0] as  $\epsilon$  Recursive relation:

- ► ISL\*(i) = 1 if  $\exists j$ ,  $0 \le j < i \text{ s.t } ISL*(j) \text{ and } IsInL(A[j+1..i])$
- ightharpoonup ISL\*(i) = 0 otherwise

Output: ISL\*(n)

## Naming subproblems and recursive equation

After seeing that number of subproblems is O(n) we name them to help us understand the structure better.

ISL\*(i): a boolean which is 1 if A[1..i] is in L\*, 0 otherwise

Base case: ISL\*(0) = 1 interpreting A[1..0] as  $\epsilon$  Recursive relation:

- ▶ ISL\*(i) = 1 if  $\exists j$ ,  $0 \le j < i \text{ s.t } ISL*(j) \text{ and } IsInL(A[j+1..i])$
- ►  $ISL^*(i) = 0$  otherwise

Output: ISL\*(n)

Typically, after finding a dynamic programming recursion, we often convert the recursive algorithm into an <u>iterative</u> algorithm via <u>explicit memoization</u> and <u>bottom up</u> computation.

Why? Mainly for further optimization of running time and space.

#### How

- First, allocate a data structure (usually an array or a multi-dimensional array that can hold values for each of the subproblems)
- ▶ Figure out a way to order the computation of the sub-problems starting from the base case.

Typically, after finding a dynamic programming recursion, we often convert the recursive algorithm into an <u>iterative</u> algorithm via <u>explicit memoization</u> and <u>bottom up</u> computation.

Why? Mainly for further optimization of running time and space.

#### How

- First, allocate a data structure (usually an array or a multi-dimensional array that can hold values for each of the subproblems)
- ▶ Figure out a way to order the computation of the sub-problems starting from the base case.

Typically, after finding a dynamic programming recursion, we often convert the recursive algorithm into an <u>iterative</u> algorithm via <u>explicit memoization</u> and <u>bottom up</u> computation.

Why? Mainly for further optimization of running time and space.

#### How?

- First, allocate a data structure (usually an array or a multi-dimensional array that can hold values for each of the subproblems)
- ► Figure out a way to order the computation of the sub-problems starting from the base case.

Typically, after finding a dynamic programming recursion, we often convert the recursive algorithm into an <u>iterative</u> algorithm via <u>explicit memoization</u> and <u>bottom up</u> computation.

Why? Mainly for further optimization of running time and space.

#### How?

- First, allocate a data structure (usually an array or a multi-dimensional array that can hold values for each of the subproblems)
- ► Figure out a way to order the computation of the sub-problems starting from the base case.

```
IsStringinLstar-Iterative(A[1..n]):
    boolean ISL^*[0..(n+1)]
    ISL^*[0] = TRUE
    for i = 1 to n do
         for i = 0 to i - 1 do
             if (ISL^*[j] \text{ and } IsInL(A[j+1..i]))
                  ISL^*[i] = TRUE
                  break
    if (ISL^*[n] = 1) Output YES
    else Output NO
```

- **Running time:**  $O(n^2)$  (assuming call to IsInL is O(1) time)
- ► Space: O(n)

```
| IsStringinLstar-Iterative(A[1..n]):
| boolean ISL*[0..(n + 1)] |
| ISL*[0] = TRUE |
| for i = 1 to n do |
| for j = 0 to i - 1 do |
| if (ISL*[j] and IsInL(A[j + 1..i])) |
| ISL*[i] = TRUE |
| break |
| if (ISL*[n] = 1) Output YES |
| else Output NO
```

- ▶ Running time:  $O(n^2)$  (assuming call to IsInL is O(1) time)
- ► Space: O(n)

```
| IsStringinLstar-Iterative(A[1..n]):
| boolean | ISL*[0..(n + 1)] |
| ISL*[0] = TRUE |
| for i = 1 to n do |
| for j = 0 to i - 1 do |
| if (ISL*[j] and IsInL(A[j + 1..i])) |
| ISL*[i] = TRUE |
| break |
| if (ISL*[n] = 1) Output YES |
| else Output NO
```

- **Running time:**  $O(n^2)$  (assuming call to IsInL is O(1) time)
- ► Space: O(n)

```
| IsStringinLstar-Iterative(A[1..n]):
| boolean ISL*[0..(n + 1)] |
| ISL*[0] = TRUE |
| for i = 1 to n do |
| for j = 0 to i - 1 do |
| if (ISL*[j] and IsInL(A[j + 1..i])) |
| ISL*[i] = TRUE |
| break |
| if (ISL*[n] = 1) Output YES |
| else Output NO
```

**Running time:**  $O(n^2)$  (assuming call to IsInL is O(1) time)

► Space: O(n)

```
| IsStringinLstar-Iterative(A[1..n]):
| boolean | ISL*[0..(n + 1)] |
| ISL*[0] = TRUE |
| for i = 1 to n do |
| for j = 0 to i - 1 do |
| if (| ISL*[j] and | IsInL(A[j + 1..i])) |
| ISL*[i] = TRUE |
| break |
| if (| ISL*[n] = 1) | Output YES |
| else | Output NO
```

**Running time:**  $O(n^2)$  (assuming call to IsInL is O(1) time)

► Space: O(n)

# Example

Consider string samiam

## Intro. Algorithms & Models of Computation

CS/ECE 374A, Fall 2022

# 13.4

Longest Increasing Subsequence Revisited

## Intro. Algorithms & Models of Computation

CS/ECE 374A, Fall 2022

# 13.4.1

Longest Increasing Subsequence

## Sequences

#### **Definition 13.1.**

<u>Sequence</u>: an ordered list  $a_1, a_2, \ldots, a_n$ . <u>Length</u> of a sequence is number of elements in the list.

#### Definition 13.2.

 $a_{i_1}, \ldots, a_{i_k}$  is a subsequence of  $a_1, \ldots, a_n$  if  $1 \le i_1 < i_2 < \ldots < i_k \le n$ .

#### **Definition 13.3.**

A sequence is <u>increasing</u> if  $a_1 < a_2 < \ldots < a_n$ . It is <u>non-decreasing</u> if  $a_1 \leq a_2 \leq \ldots \leq a_n$ . Similarly <u>decreasing</u> and <u>non-increasing</u>.

## Sequences

Example...

## Example 13.4.

- 1. Sequence: **6**, **3**, **5**, **2**, **7**, **8**, **1**, **9**
- 2. Subsequence of above sequence: **5**, **2**, **1**
- 3. Increasing sequence: **3**, **5**, **9**, **17**, **54**
- 4. Decreasing sequence: **34**, **21**, **7**, **5**, **1**
- 5. Increasing subsequence of the first sequence: **2**, **7**, **9**.

## Longest Increasing Subsequence Problem

```
Input A sequence of numbers a_1, a_2, \ldots, a_n
Goal Find an increasing subsequence a_{i_1}, a_{i_2}, \ldots, a_{i_k} of maximum length
```

#### example 13.5

- 1. Sequence: 6, 3, 5, 2, 7, 8, 1
- 2. Increasing subsequences: 6, 7, 8 and 3, 5, 7, 8 and 2, 7 etc
- 3. Longest increasing subsequence: 3, 5, 7, 8

## Longest Increasing Subsequence Problem

Input A sequence of numbers  $a_1, a_2, \ldots, a_n$ Goal Find an <u>increasing subsequence</u>  $a_{i_1}, a_{i_2}, \ldots, a_{i_k}$  of maximum length

### Example 13.5

- 1. Sequence: 6, 3, 5, 2, 7, 8, 1
- 2. Increasing subsequences: 6, 7, 8 and 3, 5, 7, 8 and 2, 7 etc
- 3. Longest increasing subsequence: 3, 5, 7, 8

## Recursive Approach: Take 1

LIS: Longest increasing subsequence

Can we find a recursive algorithm for LIS?

### LIS(**A[1..n]**):

- 1. Case 1: Does not contain A[n] in which case LIS(A[1..n]) = LIS(A[1..(n-1)])
- 2. Case 2: contains A[n] in which case LIS(A[1..n]) is not so clear.

For second case we want to find a subsequence in A[1..(n-1)] that is restricted to numbers less than A[n]. This suggests that a more general problem is  $LIS\_smaller(A[1..n], x)$  which gives the longest increasing subsequence in A where each number in the sequence is less than x.

## Recursive Approach: Take 1

LIS: Longest increasing subsequence

Can we find a recursive algorithm for LIS?

### LIS(**A[1..n]**):

- 1. Case 1: Does not contain A[n] in which case LIS(A[1..n]) = LIS(A[1..(n-1)])
- 2. Case 2: contains A[n] in which case LIS(A[1..n]) is not so clear.

#### Observation 13.6.

For second case we want to find a subsequence in A[1..(n-1)] that is restricted to numbers less than A[n]. This suggests that a more general problem is LIS\_smaller(A[1..n], x) which gives the longest increasing subsequence in A where each number in the sequence is less than x.

## Recursive Approach

**LIS(A[1..n])**: the length of longest increasing subsequence in **A** 

LIS\_smaller(A[1..n], x): length of longest increasing subsequence in A[1..n] with all numbers in subsequence less than x

```
\begin{split} & \text{LIS\_smaller}(A[1..i], x): \\ & \text{if } i = 0 \text{ then return } 0 \\ & \text{m} = \text{LIS\_smaller}(A[1..i-1], x) \\ & \text{if } A[i] < x \text{ then} \\ & \text{m} = \text{max}(\text{m}, 1 + \text{LIS\_smaller}(A[1..i-1], A[i])) \\ & \text{Output m} \end{split}
```

```
\begin{array}{c} \text{LIS}(A[1..n]): \\ \text{return LIS\_smaller}(A[1..n], \infty) \end{array}
```

```
\begin{split} & \text{LIS\_smaller}(A[1..i],x): \\ & \text{if } i = 0 \text{ then return } 0 \\ & m = \text{LIS\_smaller}(A[1..i-1],x) \\ & \text{if } A[i] < x \text{ then} \\ & m = \text{max}(m,1 + \text{LIS\_smaller}(A[1..i-1],A[i])) \\ & \text{Output } m \end{split}
```

```
 \begin{array}{c} \mathsf{LIS}(\mathsf{A}[1..\mathsf{n}]) \colon \\ \mathsf{return} \ \ \mathsf{LIS}\_\mathsf{smaller}(\mathsf{A}[1..\mathsf{n}], \infty) \end{array}
```

- ► How many distinct sub-problems will LIS\_smaller(A[1..n],  $\infty$ ) generate?  $\mathbb{O}(n^2)$
- What is the running time if we memoize recursion? O(n²) since each call takes O(1) time to assemble the answers from to recursive calls and no other computation.
- ► How much space for memoization?  $O(n^2)$

```
\begin{split} & \text{LIS\_smaller}(A[1..i],x): \\ & \text{if } i = 0 \text{ then return } 0 \\ & m = \text{LIS\_smaller}(A[1..i-1],x) \\ & \text{if } A[i] < x \text{ then} \\ & m = \text{max}(m,1 + \text{LIS\_smaller}(A[1..i-1],A[i])) \\ & \text{Output } m \end{split}
```

```
 \begin{array}{c} \mathsf{LIS}(\mathsf{A}[1..\mathsf{n}]) \colon \\ \mathsf{return} \  \, \mathsf{LIS}\_\mathsf{smaller}(\mathsf{A}[1..\mathsf{n}], \infty) \end{array}
```

- ▶ How many distinct sub-problems will LIS\_smaller(A[1..n],  $\infty$ ) generate? O( $n^2$ )
- What is the running time if we memoize recursion? O(n²) since each call takes O(1) time to assemble the answers from to recursive calls and no other computation.
- ► How much space for memoization?  $O(n^2)$

```
\begin{split} & \text{LIS\_smaller}(A[1..i],x): \\ & \text{if } i = 0 \text{ then return } 0 \\ & \text{m} = \text{LIS\_smaller}(A[1..i-1],x) \\ & \text{if } A[i] < x \text{ then} \\ & \text{m} = \text{max}(\text{m},1+\text{LIS\_smaller}(A[1..i-1],A[i])) \\ & \text{Output m} \end{split}
```

```
 \begin{array}{c} \textbf{LIS}(\textbf{A[1..n]}): \\ \textbf{return LIS\_smaller}(\textbf{A[1..n]}, \infty) \end{array}
```

- ▶ How many distinct sub-problems will LIS\_smaller(A[1..n],  $\infty$ ) generate? O( $n^2$ )
- What is the running time if we memoize recursion? O(n²) since each call takes O(1) time to assemble the answers from to recursive calls and no other computation.
- ► How much space for memoization?  $O(n^2)$

```
\begin{split} & \textbf{LIS\_smaller}(A[1..i], x): \\ & \textbf{if } i = 0 \textbf{ then return } 0 \\ & \textbf{m} = \textbf{LIS\_smaller}(A[1..i-1], x) \\ & \textbf{if } A[i] < x \textbf{ then} \\ & \textbf{m} = \text{max}(\textbf{m}, 1 + \textbf{LIS\_smaller}(A[1..i-1], A[i])) \\ & \textbf{Output } \textbf{m} \end{split}
```

```
 \begin{array}{c} \mathsf{LIS}(\mathsf{A}[1..\mathsf{n}]) \colon \\ \mathsf{return} \ \mathsf{LIS\_smaller}(\mathsf{A}[1..\mathsf{n}], \infty) \end{array}
```

- ▶ How many distinct sub-problems will LIS\_smaller(A[1..n],  $\infty$ ) generate? O( $n^2$ )
- What is the running time if we memoize recursion? O(n²) since each call takes O(1) time to assemble the answers from to recursive calls and no other computation.
- ► How much space for memoization?  $O(n^2)$

```
\begin{split} & \text{LIS\_smaller}(A[1..i],x): \\ & \text{if } i = 0 \text{ then return } 0 \\ & m = \text{LIS\_smaller}(A[1..i-1],x) \\ & \text{if } A[i] < x \text{ then} \\ & m = \text{max}(m,1 + \text{LIS\_smaller}(A[1..i-1],A[i])) \\ & \text{Output } m \end{split}
```

```
 \begin{array}{c} \mathsf{LIS}(\mathsf{A}[1..\mathsf{n}]) \colon \\ \mathsf{return} \  \, \mathsf{LIS}\_\mathsf{smaller}(\mathsf{A}[1..\mathsf{n}], \infty) \end{array}
```

- ► How many distinct sub-problems will LIS\_smaller(A[1..n],  $\infty$ ) generate? O( $n^2$ )
- What is the running time if we memoize recursion? O(n²) since each call takes O(1) time to assemble the answers from to recursive calls and no other computation.
- ▶ How much space for memoization?  $O(n^2)$

```
\begin{split} & \text{LIS\_smaller}(A[1..i],x): \\ & \text{if } i = 0 \text{ then return } 0 \\ & m = \text{LIS\_smaller}(A[1..i-1],x) \\ & \text{if } A[i] < x \text{ then} \\ & m = \text{max}(m,1 + \text{LIS\_smaller}(A[1..i-1],A[i])) \\ & \text{Output } m \end{split}
```

```
 \begin{array}{c} \mathsf{LIS}(\mathsf{A}[1..\mathsf{n}]) \colon \\ \mathsf{return} \ \ \mathsf{LIS}\_\mathsf{smaller}(\mathsf{A}[1..\mathsf{n}], \infty) \end{array}
```

- ► How many distinct sub-problems will LIS\_smaller(A[1..n],  $\infty$ ) generate? O( $n^2$ )
- What is the running time if we memoize recursion? O(n²) since each call takes O(1) time to assemble the answers from to recursive calls and no other computation.
- ► How much space for memoization?  $O(n^2)$

# Naming subproblems and recursive equation

After seeing that number of subproblems is  $O(n^2)$  we name them to help us understand the structure better. For notational ease we add  $\infty$  at end of array (in position n+1)

LIS(i, j): length of longest increasing sequence in A[1..i] among numbers less than A[j] (defined only for i < j)

### Naming subproblems and recursive equation

After seeing that number of subproblems is  $O(n^2)$  we name them to help us understand the structure better. For notational ease we add  $\infty$  at end of array (in position n+1)

LIS(i, j): length of longest increasing sequence in A[1..i] among numbers less than A[j] (defined only for i < j)

Base case: LIS(0,j) = 0 for  $1 \le j \le n+1$ 

Recursive relation:

- LIS(i,j) = LIS(i-1,j) if A[i] > A[j]
- $LIS(i,j) = \max\{LIS(i-1,j), 1 + LIS(i-1,i)\} \text{ if } A[i] \leq A[j]$

Output: LIS(n, n + 1).

Assumption:  $A[n+1] = +\infty$ .

#### How to order bottom up computation?

| i   |   |   |   |   |   | j |   |           |
|-----|---|---|---|---|---|---|---|-----------|
| - ↓ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 = n + 1 |
| 0   |   |   |   |   |   |   |   |           |
| 1   |   |   |   |   |   |   |   |           |
| 2   |   |   |   |   |   |   |   |           |
| 3   |   |   |   |   |   |   |   |           |
| 4   |   |   |   |   |   |   |   |           |
| 5   |   |   |   |   |   |   |   |           |
| 6   |   |   |   |   |   |   |   |           |
| 7   |   |   |   |   |   |   |   |           |

#### Recursive relation:

$$\begin{split} & LIS(i,j) = \\ & \begin{cases} 0 & i = 0 \\ LIS(i-1,j) & A[i] > A[j] \\ max \begin{cases} & LIS(i-1,j) \\ & 1 + LIS(i-1,i) \end{cases} & A[i] \le A[j] \end{cases} \end{split}$$

Sequence: A[1..7] = 6, 3, 5, 2, 7, 8, 1 and  $A[8] = +\infty$ .

# Iterative algorithm

The dynamic program for longest increasing subsequence

```
LIS-Iterative(A[1..n]):
    A[n+1] = \infty
    int LIS[0..n, 1..n + 1]
    for j = 1...n + 1 do LIS[0, j] = 0
    for i = 1 \dots n do
         for (i = i + 1 \dots n do)
              if (A[i] > A[i])
                   LIS[i, j] = LIS[i - 1, j]
              else
                   LIS[i, j] = max(LIS[i-1, j], 1 + LIS[i-1, i])
    Return LIS[n, n + 1]
```

Running time:  $O(n^2)$ Space:  $O(n^2)$ 

#### Two comments

**Question:** Can we compute an optimum solution and not just its value? Yes! See notes.

**Question:** Is there a faster algorithm for LIS? Yes! Using a different recursion and optimizing one can obtain an  $O(n \log n)$  time and O(n) space algorithm.  $O(n \log n)$  time is not obvious. Depends on improving time by using data structures on top of dynamic programming.

#### Two comments

**Question:** Can we compute an optimum solution and not just its value? Yes! See notes.

**Question:** Is there a faster algorithm for LIS? Yes! Using a different recursion and optimizing one can obtain an  $O(n \log n)$  time and O(n) space algorithm.  $O(n \log n)$  time is not obvious. Depends on improving time by using data structures on top of dynamic programming.

#### Two comments

**Question:** Can we compute an optimum solution and not just its value? Yes! See notes.

**Question:** Is there a faster algorithm for LIS? Yes! Using a different recursion and optimizing one can obtain an  $O(n \log n)$  time and O(n) space algorithm.  $O(n \log n)$  time is not obvious. Depends on improving time by using data structures on top of dynamic programming.

# Intro. Algorithms & Models of Computation

CS/ECE 374A, Fall 2022

# 13.5

How to come up with dynamic programming algorithm: summary

- 1. Find a "smart" recursion for the problem in which the number of distinct subproblems is small; polynomial in the original problem size.
- 2. Estimate the number of subproblems, the time to evaluate each subproblem and the space needed to store the value.
- 3. This gives an upper bound on the total running time if we use automatic/explicit memoization.
- 4. Come up with an explicit memoization algorithm for the problem.
- 5. Eliminate recursion and find an iterative algorithm.
- 6. ...need to find the right way or order the subproblems evaluation. This leads to ar a dynamic programming algorithm.
- 7. Optimize the resulting algorithm further
- 8. ...
- 9. Get rich

- 1. Find a "smart" recursion for the problem in which the number of distinct subproblems is small; polynomial in the original problem size.
- 2. Estimate the number of subproblems, the time to evaluate each subproblem and the space needed to store the value.
- 3. This gives an upper bound on the total running time if we use automatic/explicit memoization.
- 4. Come up with an explicit memoization algorithm for the problem.
- 5. Eliminate recursion and find an iterative algorithm.
- 6. ...need to find the right way or order the subproblems evaluation. This leads to ar a dynamic programming algorithm.
- 7. Optimize the resulting algorithm further
- 8. ...
- 9. Get rich

- 1. Find a "smart" recursion for the problem in which the number of distinct subproblems is small; polynomial in the original problem size.
- 2. Estimate the number of subproblems, the time to evaluate each subproblem and the space needed to store the value.
- 3. This gives an upper bound on the total running time if we use automatic/explicit memoization.
- 4. Come up with an explicit memoization algorithm for the problem.
- 5. Eliminate recursion and find an iterative algorithm.
- 6. ...need to find the right way or order the subproblems evaluation. This leads to ar a dynamic programming algorithm.
- 7. Optimize the resulting algorithm further
- 8. ...
- 9. Get rich

- 1. Find a "smart" recursion for the problem in which the number of distinct subproblems is small; polynomial in the original problem size.
- 2. Estimate the number of subproblems, the time to evaluate each subproblem and the space needed to store the value.
- 3. This gives an upper bound on the total running time if we use automatic/explicit memoization.
- 4. Come up with an explicit memoization algorithm for the problem.
- 5. Eliminate recursion and find an iterative algorithm.
- 6. ...need to find the right way or order the subproblems evaluation. This leads to ar a dynamic programming algorithm.
- 7. Optimize the resulting algorithm further
- 8. ...
- 9. Get rich

- 1. Find a "smart" recursion for the problem in which the number of distinct subproblems is small; polynomial in the original problem size.
- 2. Estimate the number of subproblems, the time to evaluate each subproblem and the space needed to store the value.
- 3. This gives an upper bound on the total running time if we use automatic/explicit memoization.
- 4. Come up with an explicit memoization algorithm for the problem.
- 5. Eliminate recursion and find an iterative algorithm.
- 6. ...need to find the right way or order the subproblems evaluation. This leads to ar a dynamic programming algorithm.
- 7. Optimize the resulting algorithm further
- 8. ...
- 9. Get rich

- 1. Find a "smart" recursion for the problem in which the number of distinct subproblems is small; polynomial in the original problem size.
- 2. Estimate the number of subproblems, the time to evaluate each subproblem and the space needed to store the value.
- 3. This gives an upper bound on the total running time if we use automatic/explicit memoization.
- 4. Come up with an explicit memoization algorithm for the problem.
- 5. Eliminate recursion and find an iterative algorithm.
- 6. ...need to find the right way or order the subproblems evaluation. This leads to an a dynamic programming algorithm.
- 7. Optimize the resulting algorithm further
- 8. ...
- 9. Get rich!

- 1. Find a "smart" recursion for the problem in which the number of distinct subproblems is small; polynomial in the original problem size.
- 2. Estimate the number of subproblems, the time to evaluate each subproblem and the space needed to store the value.
- 3. This gives an upper bound on the total running time if we use automatic/explicit memoization.
- 4. Come up with an explicit memoization algorithm for the problem.
- 5. Eliminate recursion and find an iterative algorithm.
- 6. ...need to find the right way or order the subproblems evaluation. This leads to an a dynamic programming algorithm.
- 7. Optimize the resulting algorithm further
- 8. ...
- 9. Get rich

- 1. Find a "smart" recursion for the problem in which the number of distinct subproblems is small; polynomial in the original problem size.
- 2. Estimate the number of subproblems, the time to evaluate each subproblem and the space needed to store the value.
- 3. This gives an upper bound on the total running time if we use automatic/explicit memoization.
- 4. Come up with an explicit memoization algorithm for the problem.
- 5. Eliminate recursion and find an iterative algorithm.
- 6. ...need to find the right way or order the subproblems evaluation. This leads to an a dynamic programming algorithm.
- 7. Optimize the resulting algorithm further
- 8. ...
- 9. Get rich!

- 1. Find a "smart" recursion for the problem in which the number of distinct subproblems is small; polynomial in the original problem size.
- 2. Estimate the number of subproblems, the time to evaluate each subproblem and the space needed to store the value.
- 3. This gives an upper bound on the total running time if we use automatic/explicit memoization.
- 4. Come up with an explicit memoization algorithm for the problem.
- 5. Eliminate recursion and find an iterative algorithm.
- 6. ...need to find the right way or order the subproblems evaluation. This leads to an a dynamic programming algorithm.
- 7. Optimize the resulting algorithm further
- 8. ...
- 9. Get rich!

# Intro. Algorithms & Models of Computation

CS/ECE 374A, Fall 2022

# 13.6

Supplemental: Some experiments with memoization

#### Edit distance: different memoizations

| Input size | Running time in seconds |         |                      |
|------------|-------------------------|---------|----------------------|
| n          | DP                      | Partial | Implicit memoization |
| 1, 250     | 0.01                    | 0.04    | 0.20                 |
| 2,500      | 0.04                    | 0.15    | 0.84                 |
| 5,000      | 0.18                    | 0.64    | 3.73                 |
| 10,000     | 0.72                    | 2.50    | 15.05                |
| 20,000     | 2.88                    | 9.91    | 55.35                |
| 40,000     | 12.00                   | 40.00   | out of memory        |

For the input n, two random strings of length n were generated, and their distance computed using edit distance.

Note, that edit-distance is simple enough to that DP gets very good performance. For more complicated problems, the advantage of DP would probably be much smaller. The asymptotic running time here is  $\Theta(n^2)$ .

#### Edit distance: different memoizations

#### More details

- 1. The implementation was done in C++, using -O9 in compilation.
- 2. DP = Dynamic Programming = iterative implementation using arrays.
- 3. Partial memoization = Still uses recursive code, but remembers the results in tables that are managed directly by the code.
- 4. Implicit memoization = implemented using the standard unordered\_map.

#### Edit distance: different memoizations

#### Conclusions

- 1. If you are in interview setup, you should probably solve the problem using DP. That what you would be expected to do.
- 2. Otherwise, I would probably implement partial memoization it still has the simplicity of the recursive solution, while having a decent performance. If I really care about performance I would implement the DP.
- 3. Using implicit memoization probably makes sense only if running time is not really an issue.

### Intro. Algorithms & Models of Computation

CS/ECE 374A, Fall 2022

# 13.7

Tangential: Fibonacci and his numbers

#### Fibonacci = Leonardo Bonacci

- 1. CE 1170–1250.
- 2. Italian. Spent time in Bugia, Algeria with his father (trader).
- 3. Traveled around the Mediterranean coast, learned the Hindu-Arabic numerals
- 4. Hindu-Arabic numerals:
  - 4.1 Developed before 400 CE by Hindu philosophers.
  - 4.2 Arrived to the Arab world sometime before 825CE.
  - 4.3 Muhammad ibn Musa al-Khwarizmi (Algorithm/Algebra) wrote a book in 825 CE explaining the new system. (Showed how to solved quadratic equations.)
- 5. 1202 CE: Fibonacci wrote a book "Liber Abaci" (book of calculations) that popularized the new system.
- 6. Brought and popularized the Hindu–Arabic system to Italy.

- 1. Fibonacci in Liber Abaci posed and solved a problem involving the growth of a population of rabbits based on idealized assumptions.
- Describe growth processes.Every month a mature pair of rabbits give birth to one pair of young rabbits

| Month | grownup pairs | Young pairs |
|-------|---------------|-------------|
| 1     | 1             | 0           |
| 2     | 1             | 1           |
| 3     | 2             | 1           |
| 4     | 3             | 2           |
| 5     | 5             | 3           |
|       |               |             |
| 40    | 102,334,155   | 63,245,986  |

- 1. Fibonacci in Liber Abaci posed and solved a problem involving the growth of a population of rabbits based on idealized assumptions.
- Describe growth processes.Every month a mature pair of rabbits give birth to one pair of young rabbits.

| Month | grownup pairs | Young pairs |
|-------|---------------|-------------|
| 1     | 1             | 0           |
| 2     | 1             | 1           |
| 3     | 2             | 1           |
| 4     | 3             | 2           |
| 5     | 5             | 3           |
|       |               |             |
| 40    | 102,334,155   | 63,245,986  |

- 1. Fibonacci in Liber Abaci posed and solved a problem involving the growth of a population of rabbits based on idealized assumptions.
- Describe growth processes.Every month a mature pair of rabbits give birth to one pair of young rabbits.

| Month | grownup pairs | Young pairs |
|-------|---------------|-------------|
| 1     | 1             | 0           |
| 2     | 1             | 1           |
| 3     | 2             | 1           |
| 4     | 3             | 2           |
| 5     | 5             | 3           |
|       |               |             |
| 40    | 102,334,155   | 63,245,986  |

- 1. Fibonacci in Liber Abaci posed and solved a problem involving the growth of a population of rabbits based on idealized assumptions.
- 2. Describe growth processes. Every month a mature pair of rabbits give birth to one pair of young rabbits.

| Month | grownup pairs | Young pairs |
|-------|---------------|-------------|
| 1     | 1             | 0           |
| 2     | 1             | 1           |
| 3     | 2             | 1           |
| 4     | 3             | 2           |
| 5     | 5             | 3           |
|       |               |             |
| 40    | 102,334,155   | 63,245,986  |

- 1. Fibonacci in Liber Abaci posed and solved a problem involving the growth of a population of rabbits based on idealized assumptions.
- Describe growth processes.Every month a mature pair of rabbits give birth to one pair of young rabbits.

| Month | grownup pairs | Young pairs |
|-------|---------------|-------------|
| 1     | 1             | 0           |
| 2     | 1             | 1           |
| 3     | 2             | 1           |
| 4     | 3             | 2           |
| 5     | 5             | 3           |
|       |               |             |
| 40    | 102,334,155   | 63,245,986  |

- 1. Fibonacci in Liber Abaci posed and solved a problem involving the growth of a population of rabbits based on idealized assumptions.
- 2. Describe growth processes. Every month a mature pair of rabbits give birth to one pair of young rabbits.

| Month | grownup pairs | Young pairs |
|-------|---------------|-------------|
| 1     | 1             | 0           |
| 2     | 1             | 1           |
| 3     | 2             | 1           |
| 4     | 3             | 2           |
| 5     | 5             | 3           |
|       |               |             |
| 40    | 102,334,155   | 63,245,986  |

- 1. Fibonacci in Liber Abaci posed and solved a problem involving the growth of a population of rabbits based on idealized assumptions.
- Describe growth processes.Every month a mature pair of rabbits give birth to one pair of young rabbits.

| Month | grownup pairs | Young pairs |
|-------|---------------|-------------|
| 1     | 1             | 0           |
| 2     | 1             | 1           |
| 3     | 2             | 1           |
| 4     | 3             | 2           |
| 5     | 5             | 3           |
|       |               |             |
| 40    | 102,334,155   | 63,245,986  |

- 1. Fibonacci in Liber Abaci posed and solved a problem involving the growth of a population of rabbits based on idealized assumptions.
- Describe growth processes.Every month a mature pair of rabbits give birth to one pair of young rabbits.

| Month | grownup pairs | Young pairs |
|-------|---------------|-------------|
| 1     | 1             | 0           |
| 2     | 1             | 1           |
| 3     | 2             | 1           |
| 4     | 3             | 2           |
| 5     | 5             | 3           |
| ÷     | <u>:</u>      | <u>:</u>    |
| 40    | 102,334,155   | 63,245,986  |

- 1.  $\lim_{n\to\infty} F_n/F_{n-1} = \varphi$ .
- 2. Golden ratio:  $\varphi = (\sqrt{5} + 1)/2 \approx 1.618033$ .
- 3. For a>b>0,  $\varphi=\frac{a+b}{a}=\frac{a}{b}$ .  $\Longrightarrow \frac{\varphi+1}{\varphi}=\varphi$ .  $\Longrightarrow 0=\varphi^2-\varphi-1$ .
- 4.  $\varphi = \frac{1 \pm \sqrt{1+4}}{2}$  since  $\varphi$  is not negative, so...
- 5.  $\mathbf{F_n} = \frac{\varphi^{\mathbf{n}} (1 \varphi)^{\mathbf{n}}}{\sqrt{5}}$
- 6. Golden ratio goes back to Euclid
- 7. Many applications of GR and Fibonacci numbers in nature, models (stock market), art, etc...

- 1.  $\lim_{n\to\infty} F_n/F_{n-1} = \varphi$ .
- 2. Golden ratio:  $\varphi = (\sqrt{5} + 1)/2 \approx 1.618033$ .
- 3. For  $\mathbf{a} > \mathbf{b} > \mathbf{0}$ ,  $\varphi = \frac{\mathbf{a} + \mathbf{b}}{\mathbf{a}} = \frac{\mathbf{a}}{\mathbf{b}}$ .  $\Longrightarrow \frac{\varphi + 1}{\varphi} = \varphi$ .  $\Longrightarrow \mathbf{0} = \varphi^2 \varphi \mathbf{1}$ .
- 4.  $arphi=rac{1\pm\sqrt{1+4}}{2}$  since arphi is not negative, so...
- 5.  $F_n = \frac{\varphi^n (1 \varphi)^n}{\sqrt{5}}$
- 6. Golden ratio goes back to Euclid
- 7. Many applications of GR and Fibonacci numbers in nature, models (stock market) art, etc...

- 1.  $\lim_{n\to\infty} F_n/F_{n-1} = \varphi$ .
- 2. Golden ratio:  $\varphi = (\sqrt{5} + 1)/2 \approx 1.618033$ .
- 3. For a>b>0,  $\varphi=\frac{a+b}{a}=\frac{a}{b}$ .  $\Longrightarrow \frac{\varphi+1}{\varphi}=\varphi$ .  $\Longrightarrow 0=\varphi^2-\varphi-1$ .
- 4.  $\varphi = \frac{1 \pm \sqrt{1+4}}{2}$  since  $\varphi$  is not negative, so...
- $5. \, \mathsf{F}_{\mathsf{n}} = \frac{\varphi^{\mathsf{n}} (1 \varphi)^{\mathsf{n}}}{\sqrt{5}}$
- 6. Golden ratio goes back to Euclid
- 7. Many applications of GR and Fibonacci numbers in nature, models (stock market), art, etc...

- 1.  $\lim_{n\to\infty} F_n/F_{n-1} = \varphi$ .
- 2. Golden ratio:  $\varphi = (\sqrt{5} + 1)/2 \approx 1.618033$ .
- 3. For a > b > 0,  $\varphi = \frac{a+b}{a} = \frac{a}{b}$ .  $\Longrightarrow \frac{\varphi+1}{\varphi} = \varphi$ .  $\Longrightarrow 0 = \varphi^2 \varphi 1$ .
- 4.  $\varphi = \frac{1 \pm \sqrt{1+4}}{2}$  since  $\varphi$  is not negative, so...
- 5.  $F_n = \frac{\varphi^n (1 \varphi)^n}{\sqrt{5}}$
- 6. Golden ratio goes back to Euclid
- 7. Many applications of GR and Fibonacci numbers in nature, models (stock market) art, etc...

- 1.  $\lim_{n\to\infty} F_n/F_{n-1} = \varphi$ .
- 2. Golden ratio:  $\varphi = (\sqrt{5} + 1)/2 \approx 1.618033$ .
- 3. For a > b > 0,  $\varphi = \frac{a+b}{a} = \frac{a}{b}$ .  $\Longrightarrow \frac{\varphi+1}{\varphi} = \varphi$ .  $\Longrightarrow 0 = \varphi^2 \varphi 1$ .
- 4.  $\varphi = \frac{1 \pm \sqrt{1+4}}{2}$  since  $\varphi$  is not negative, so...
- 5.  $\mathbf{F_n} = \frac{\varphi^{\mathbf{n}} (1 \varphi)^{\mathbf{n}}}{\sqrt{5}}$
- 6. Golden ratio goes back to Euclid
- 7. Many applications of GR and Fibonacci numbers in nature, models (stock market), art, etc...

- 1.  $\lim_{n\to\infty} F_n/F_{n-1} = \varphi$ .
- 2. Golden ratio:  $\varphi = (\sqrt{5} + 1)/2 \approx 1.618033$ .
- 3. For a > b > 0,  $\varphi = \frac{a+b}{a} = \frac{a}{b}$ .  $\Longrightarrow \frac{\varphi+1}{\varphi} = \varphi$ .  $\Longrightarrow 0 = \varphi^2 \varphi 1$ .
- 4.  $\varphi = \frac{1 \pm \sqrt{1+4}}{2}$  since  $\varphi$  is not negative, so...
- 5.  $\mathbf{F}_{\mathbf{n}} = \frac{\varphi^{\mathbf{n}} (1 \varphi)^{\mathbf{n}}}{\sqrt{5}}$
- 6. Golden ratio goes back to Euclid

$$\begin{array}{c}
a & b \\
\hline
a+b \\
a+b \text{ is to } a \text{ as } a \text{ is to } b
\end{array}$$

7. Many applications of GR and Fibonacci numbers in nature, models (stock market) art, etc...

- 1.  $\lim_{n\to\infty} F_n/F_{n-1} = \varphi$ .
- 2. Golden ratio:  $\varphi = (\sqrt{5} + 1)/2 \approx 1.618033$ .
- 3. For a > b > 0,  $\varphi = \frac{a+b}{a} = \frac{a}{b}$ .  $\Longrightarrow \frac{\varphi+1}{\varphi} = \varphi$ .  $\Longrightarrow 0 = \varphi^2 \varphi 1$ .
- 4.  $\varphi = \frac{1 \pm \sqrt{1+4}}{2}$  since  $\varphi$  is not negative, so...
- 5.  $\mathbf{F_n} = \frac{\varphi^{\mathbf{n}} (1 \varphi)^{\mathbf{n}}}{\sqrt{5}}$
- 6. Golden ratio goes back to Euclid

$$\begin{array}{c}
a & b \\
\hline
a+b \\
a+b \text{ is to } a \text{ as } a \text{ is to } b
\end{array}$$

7. Many applications of GR and Fibonacci numbers in nature, models (stock market), art, etc...

- 1.  $\varphi = \frac{1+\sqrt{5}}{2}$  and  $\psi = \frac{1-\sqrt{5}}{2} = 1 \varphi$  are solution to the equation:  $\mathbf{x}^2 = \mathbf{x} + \mathbf{1}$ .
- 2. As such,  $\varphi$  and  $\psi$  a solution to the equation:  $\mathbf{x}^{\mathbf{n}} = \mathbf{x}^{\mathbf{n}-1} + \mathbf{x}^{\mathbf{n}-2}$ .
- 3. Consider the sequence  $U_n = U_{n-1} + U_{n-2}$ . For any  $\alpha, \beta \in \mathbb{R}$ , consider  $U_n = \alpha \varphi^n + \beta \psi^n$ . A valid solution to the sequence.

$$U_{n} = U_{n-1} + U_{n-2} = \alpha \varphi^{n-1} + \beta \psi^{n-1} + \alpha \varphi^{n-2} + \beta \psi^{n-2}$$

- 1.  $\varphi = \frac{1+\sqrt{5}}{2}$  and  $\psi = \frac{1-\sqrt{5}}{2} = 1 \varphi$  are solution to the equation:  $\mathbf{x}^2 = \mathbf{x} + \mathbf{1}$ .
- 2. As such,  $\varphi$  and  $\psi$  a solution to the equation:  $\mathbf{x}^{\mathbf{n}} = \mathbf{x}^{\mathbf{n}-1} + \mathbf{x}^{\mathbf{n}-2}$ .
- 3. Consider the sequence  $U_n = U_{n-1} + U_{n-2}$ . For any  $\alpha, \beta \in \mathbb{R}$ , consider  $U_n = \alpha \varphi^n + \beta \psi^n$ . A valid solution to the sequence.

$$U_{n} = U_{n-1} + U_{n-2} = \alpha \varphi^{n-1} + \beta \psi^{n-1} + \alpha \varphi^{n-2} + \beta \psi^{n-2}$$

- 1.  $\varphi = \frac{1+\sqrt{5}}{2}$  and  $\psi = \frac{1-\sqrt{5}}{2} = 1 \varphi$  are solution to the equation:  $\mathbf{x}^2 = \mathbf{x} + \mathbf{1}$ .
- 2. As such,  $\varphi$  and  $\psi$  a solution to the equation:  $\mathbf{x}^{\mathbf{n}} = \mathbf{x}^{\mathbf{n}-1} + \mathbf{x}^{\mathbf{n}-2}$ .
- 3. Consider the sequence  $U_n = U_{n-1} + U_{n-2}$ . For any  $\alpha, \beta \in \mathbb{R}$ , consider  $U_n = \alpha \varphi^n + \beta \psi^n$ . A valid solution to the sequence.

$$U_{n} = U_{n-1} + U_{n-2} = \alpha \varphi^{n-1} + \beta \psi^{n-1} + \alpha \varphi^{n-2} + \beta \psi^{n-2}$$

- 1.  $\varphi = \frac{1+\sqrt{5}}{2}$  and  $\psi = \frac{1-\sqrt{5}}{2} = 1 \varphi$  are solution to the equation:  $\mathbf{x}^2 = \mathbf{x} + \mathbf{1}$ .
- 2. As such,  $\varphi$  and  $\psi$  a solution to the equation:  $\mathbf{x}^{\mathbf{n}} = \mathbf{x}^{\mathbf{n}-1} + \mathbf{x}^{\mathbf{n}-2}$ .
- 3. Consider the sequence  $U_n = U_{n-1} + U_{n-2}$ . For any  $\alpha, \beta \in \mathbb{R}$ , consider  $U_n = \alpha \varphi^n + \beta \psi^n$ . A valid solution to the sequence.

$$\begin{aligned} \mathbf{U}_{n} &= \mathbf{U}_{n-1} + \mathbf{U}_{n-2} = \alpha \varphi^{n-1} + \beta \psi^{n-1} + \alpha \varphi^{n-2} + \beta \psi^{n-2} \\ &= (\alpha \varphi^{n-1} + \alpha \varphi^{n-2}) + (\beta \psi^{n-1} + \beta \psi^{n-2}) \end{aligned}$$

- 1.  $\varphi = \frac{1+\sqrt{5}}{2}$  and  $\psi = \frac{1-\sqrt{5}}{2} = 1 \varphi$  are solution to the equation:  $\mathbf{x}^2 = \mathbf{x} + \mathbf{1}$ .
- 2. As such,  $\varphi$  and  $\psi$  a solution to the equation:  $\mathbf{x}^{\mathbf{n}} = \mathbf{x}^{\mathbf{n}-1} + \mathbf{x}^{\mathbf{n}-2}$ .
- 3. Consider the sequence  $U_n = U_{n-1} + U_{n-2}$ . For any  $\alpha, \beta \in \mathbb{R}$ , consider  $U_n = \alpha \varphi^n + \beta \psi^n$ . A valid solution to the sequence.

$$\begin{split} \mathbf{U}_{n} &= \mathbf{U}_{n-1} + \mathbf{U}_{n-2} = \alpha \varphi^{n-1} + \beta \psi^{n-1} + \alpha \varphi^{n-2} + \beta \psi^{n-2} \\ &= \left(\alpha \varphi^{n-1} + \alpha \varphi^{n-2}\right) + \left(\beta \psi^{n-1} + \beta \psi^{n-2}\right) = \mathbf{U}_{n-1} + \mathbf{U}_{n-2}. \end{split}$$

- 1.  $\varphi = \frac{1+\sqrt{5}}{2}$  and  $\psi = \frac{1-\sqrt{5}}{2} = 1 \varphi$  are solution to the equation:  $\mathbf{x}^2 = \mathbf{x} + \mathbf{1}$ .
- 2. As such,  $\varphi$  and  $\psi$  a solution to the equation:  $\mathbf{x}^{\mathbf{n}} = \mathbf{x}^{\mathbf{n}-1} + \mathbf{x}^{\mathbf{n}-2}$ .
- 3. Consider the sequence  $U_n = U_{n-1} + U_{n-2}$ . For any  $\alpha, \beta \in \mathbb{R}$ , consider  $U_n = \alpha \varphi^n + \beta \psi^n$ . A valid solution to the sequence.

$$\begin{split} \mathbf{U}_{n} &= \mathbf{U}_{n-1} + \mathbf{U}_{n-2} = \alpha \varphi^{n-1} + \beta \psi^{n-1} + \alpha \varphi^{n-2} + \beta \psi^{n-2} \\ &= (\alpha \varphi^{n-1} + \alpha \varphi^{n-2}) + (\beta \psi^{n-1} + \beta \psi^{n-2}) = \mathbf{U}_{n-1} + \mathbf{U}_{n-2}. \end{split}$$

4. Solve the system  $U_0 = 0$  and  $U_1 = 1 \iff \alpha \varphi^0 + \beta \psi^0 = 0$  and  $\alpha \varphi^1 + \beta \psi^1 = 1$ 

- 1.  $\varphi = \frac{1+\sqrt{5}}{2}$  and  $\psi = \frac{1-\sqrt{5}}{2} = 1 \varphi$  are solution to the equation:  $\mathbf{x}^2 = \mathbf{x} + \mathbf{1}$ .
- 2. As such,  $\varphi$  and  $\psi$  a solution to the equation:  $\mathbf{x}^{\mathbf{n}} = \mathbf{x}^{\mathbf{n}-1} + \mathbf{x}^{\mathbf{n}-2}$ .
- 3. Consider the sequence  $U_n = U_{n-1} + U_{n-2}$ . For any  $\alpha, \beta \in \mathbb{R}$ , consider  $U_n = \alpha \varphi^n + \beta \psi^n$ . A valid solution to the sequence.

$$\begin{split} \mathbf{U}_{n} &= \mathbf{U}_{n-1} + \mathbf{U}_{n-2} = \alpha \varphi^{n-1} + \beta \psi^{n-1} + \alpha \varphi^{n-2} + \beta \psi^{n-2} \\ &= \left(\alpha \varphi^{n-1} + \alpha \varphi^{n-2}\right) + \left(\beta \psi^{n-1} + \beta \psi^{n-2}\right) = \mathbf{U}_{n-1} + \mathbf{U}_{n-2}. \end{split}$$

4. Solve the system  $\mathbf{U}_0 = \mathbf{0}$  and  $\mathbf{U}_1 = \mathbf{1} \iff \alpha \varphi^0 + \beta \psi^0 = \mathbf{0}$  and  $\alpha \varphi^1 + \beta \psi^1 = \mathbf{1} \implies \beta = -\alpha$ 

- 1.  $\varphi = \frac{1+\sqrt{5}}{2}$  and  $\psi = \frac{1-\sqrt{5}}{2} = 1 \varphi$  are solution to the equation:  $\mathbf{x}^2 = \mathbf{x} + \mathbf{1}$ .
- 2. As such,  $\varphi$  and  $\psi$  a solution to the equation:  $\mathbf{x}^{\mathbf{n}} = \mathbf{x}^{\mathbf{n}-1} + \mathbf{x}^{\mathbf{n}-2}$ .
- 3. Consider the sequence  $U_n = U_{n-1} + U_{n-2}$ . For any  $\alpha, \beta \in \mathbb{R}$ , consider  $U_n = \alpha \varphi^n + \beta \psi^n$ . A valid solution to the sequence.

$$\begin{split} \mathbf{U}_{n} &= \mathbf{U}_{n-1} + \mathbf{U}_{n-2} = \alpha \varphi^{n-1} + \beta \psi^{n-1} + \alpha \varphi^{n-2} + \beta \psi^{n-2} \\ &= (\alpha \varphi^{n-1} + \alpha \varphi^{n-2}) + (\beta \psi^{n-1} + \beta \psi^{n-2}) = \mathbf{U}_{n-1} + \mathbf{U}_{n-2}. \end{split}$$

$$\mathsf{U}_0 = \mathbf{0}$$
 and  $\mathsf{U}_1 = \mathbf{1} \iff \alpha \varphi^0 + \beta \psi^0 = \mathbf{0}$  and  $\alpha \varphi^1 + \beta \psi^1 = \mathbf{1} \implies \beta = -\alpha \implies \varphi - \psi = 1/\alpha$ 

- 1.  $\varphi = \frac{1+\sqrt{5}}{2}$  and  $\psi = \frac{1-\sqrt{5}}{2} = 1 \varphi$  are solution to the equation:  $\mathbf{x}^2 = \mathbf{x} + \mathbf{1}$ .
- 2. As such,  $\varphi$  and  $\psi$  a solution to the equation:  $\mathbf{x}^{\mathbf{n}} = \mathbf{x}^{\mathbf{n}-1} + \mathbf{x}^{\mathbf{n}-2}$ .
- 3. Consider the sequence  $U_n = U_{n-1} + U_{n-2}$ . For any  $\alpha, \beta \in \mathbb{R}$ , consider  $U_n = \alpha \varphi^n + \beta \psi^n$ . A valid solution to the sequence.

$$\begin{split} \mathbf{U}_{\mathbf{n}} &= \mathbf{U}_{\mathbf{n}-1} + \mathbf{U}_{\mathbf{n}-2} = \alpha \varphi^{\mathbf{n}-1} + \beta \psi^{\mathbf{n}-1} + \alpha \varphi^{\mathbf{n}-2} + \beta \psi^{\mathbf{n}-2} \\ &= \left(\alpha \varphi^{\mathbf{n}-1} + \alpha \varphi^{\mathbf{n}-2}\right) + \left(\beta \psi^{\mathbf{n}-1} + \beta \psi^{\mathbf{n}-2}\right) = \mathbf{U}_{\mathbf{n}-1} + \mathbf{U}_{\mathbf{n}-2}. \end{split}$$

$$\begin{array}{l} \textbf{U}_0 = \textbf{0} \text{ and } \textbf{U}_1 = \textbf{1} \iff \alpha \varphi^0 + \beta \psi^0 = \textbf{0} \text{ and } \alpha \varphi^1 + \beta \psi^1 = \textbf{1} \implies \\ \beta = -\alpha \implies \varphi - \psi = \textbf{1}/\alpha \implies \frac{\textbf{1} + \sqrt{5}}{2} - \frac{\textbf{1} - \sqrt{5}}{2} = \textbf{1}/\alpha \end{array}$$

- 1.  $\varphi = \frac{1+\sqrt{5}}{2}$  and  $\psi = \frac{1-\sqrt{5}}{2} = 1 \varphi$  are solution to the equation:  $\mathbf{x}^2 = \mathbf{x} + \mathbf{1}$ .
- 2. As such,  $\varphi$  and  $\psi$  a solution to the equation:  $\mathbf{x}^{\mathbf{n}} = \mathbf{x}^{\mathbf{n}-1} + \mathbf{x}^{\mathbf{n}-2}$ .
- 3. Consider the sequence  $U_n = U_{n-1} + U_{n-2}$ . For any  $\alpha, \beta \in \mathbb{R}$ , consider  $U_n = \alpha \varphi^n + \beta \psi^n$ . A valid solution to the sequence.

$$\begin{split} \mathbf{U}_{\mathbf{n}} &= \mathbf{U}_{\mathbf{n}-1} + \mathbf{U}_{\mathbf{n}-2} = \alpha \varphi^{\mathbf{n}-1} + \beta \psi^{\mathbf{n}-1} + \alpha \varphi^{\mathbf{n}-2} + \beta \psi^{\mathbf{n}-2} \\ &= \left(\alpha \varphi^{\mathbf{n}-1} + \alpha \varphi^{\mathbf{n}-2}\right) + \left(\beta \psi^{\mathbf{n}-1} + \beta \psi^{\mathbf{n}-2}\right) = \mathbf{U}_{\mathbf{n}-1} + \mathbf{U}_{\mathbf{n}-2}. \end{split}$$

$$\begin{array}{l} \textbf{U}_0 = \textbf{0} \text{ and } \textbf{U}_1 = \textbf{1} \iff \alpha \varphi^0 + \beta \psi^0 = \textbf{0} \text{ and } \alpha \varphi^1 + \beta \psi^1 = \textbf{1} \implies \\ \beta = -\alpha \implies \varphi - \psi = 1/\alpha \implies \frac{1+\sqrt{5}}{2} - \frac{1-\sqrt{5}}{2} = 1/\alpha \\ \implies \alpha = 1/\sqrt{5} \end{array}$$

- 1.  $\varphi = \frac{1+\sqrt{5}}{2}$  and  $\psi = \frac{1-\sqrt{5}}{2} = 1 \varphi$  are solution to the equation:  $\mathbf{x}^2 = \mathbf{x} + \mathbf{1}$ .
- 2. As such,  $\varphi$  and  $\psi$  a solution to the equation:  $\mathbf{x}^{\mathbf{n}} = \mathbf{x}^{\mathbf{n}-1} + \mathbf{x}^{\mathbf{n}-2}$ .
- 3. Consider the sequence  $U_n = U_{n-1} + U_{n-2}$ . For any  $\alpha, \beta \in \mathbb{R}$ , consider  $U_n = \alpha \varphi^n + \beta \psi^n$ . A valid solution to the sequence.

$$\begin{split} \mathbf{U}_{n} &= \mathbf{U}_{n-1} + \mathbf{U}_{n-2} = \alpha \varphi^{n-1} + \beta \psi^{n-1} + \alpha \varphi^{n-2} + \beta \psi^{n-2} \\ &= (\alpha \varphi^{n-1} + \alpha \varphi^{n-2}) + (\beta \psi^{n-1} + \beta \psi^{n-2}) = \mathbf{U}_{n-1} + \mathbf{U}_{n-2}. \end{split}$$

$$\begin{array}{l} \textbf{U}_0 = \textbf{0} \text{ and } \textbf{U}_1 = \textbf{1} \iff \alpha \varphi^0 + \beta \psi^0 = \textbf{0} \text{ and } \alpha \varphi^1 + \beta \psi^1 = \textbf{1} \implies \\ \beta = -\alpha \implies \varphi - \psi = \textbf{1}/\alpha \implies \frac{\textbf{1} + \sqrt{5}}{2} - \frac{\textbf{1} - \sqrt{5}}{2} = \textbf{1}/\alpha \\ \implies \alpha = \textbf{1}/\sqrt{5} \implies \textbf{F}_{\textbf{n}} = \textbf{U}_{\textbf{n}} = \alpha \varphi^{\textbf{n}} + \beta \psi^{\textbf{n}} = \frac{\varphi^{\textbf{n}} - (\textbf{1} - \varphi)^{\textbf{n}}}{\sqrt{5}} \end{array}$$

# Fibonacci numbers really fast

$$\left(\begin{array}{c} \mathbf{y} \\ \mathbf{x} + \mathbf{y} \end{array}\right) = \left(\begin{array}{cc} \mathbf{0} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} \end{array}\right) \left(\begin{array}{c} \mathbf{x} \\ \mathbf{y} \end{array}\right).$$

As such,

$$\begin{pmatrix} \mathbf{F}_{\mathsf{n}-1} \\ \mathbf{F}_{\mathsf{n}} \end{pmatrix} = \begin{pmatrix} \mathbf{0} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} \end{pmatrix} \begin{pmatrix} \mathbf{F}_{\mathsf{n}-2} \\ \mathbf{F}_{\mathsf{n}-1} \end{pmatrix} = \begin{pmatrix} \mathbf{0} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} \end{pmatrix}^2 \begin{pmatrix} \mathbf{F}_{\mathsf{n}-3} \\ \mathbf{F}_{\mathsf{n}-2} \end{pmatrix}$$

$$= \begin{pmatrix} \mathbf{0} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} \end{pmatrix}^{\mathsf{n}-3} \begin{pmatrix} \mathbf{F}_{\mathsf{2}} \\ \mathbf{F}_{\mathsf{1}} \end{pmatrix}.$$

#### More on fast Fibonacci numbers

#### Continued

Thus, computing the **n**th Fibonacci number can be done by computing  $\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}^{n-3}$ .

Which can be done in O(log n) time (how?). What is wrong?