Intro. Algorithms & Models of Computation

CS/ECE 374A, Fall 2022

NFAs continued, Closure Properties of Regular Languages

Lecture 5 Tuesday, September 6, 2022

Intro. Algorithms & Models of Computation

CS/ECE 374A, Fall 2022

5.1 Equivalence of NFAs and DFAs

Regular Languages, DFAs, NFAs

Theorem 5.1.

Languages accepted by DFAs, NFAs, and regular expressions are the same.

- ▶ DFAs are special cases of NFAs (easy)
- ► NFAs accept regular expressions (seen)
- ▶ DFAs accept languages accepted by NFAs (shortly)
- Regular expressions for languages accepted by DFAs (later in the course)

Equivalence of NFAs and DFAs

Theorem 5.2.

For every NFA N there is a DFA M such that L(M) = L(N).

Intro. Algorithms & Models of Computation

CS/ECE 374A, Fall 2022

5.1.1

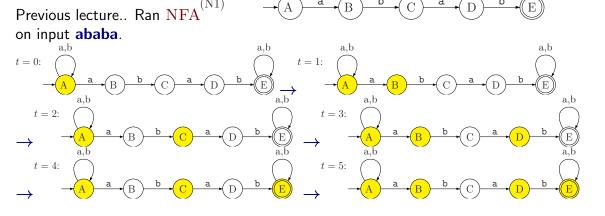
The idea of the conversion of NFA to DFA

DFAs are memoryless...

- 1. DFA knows only its current state.
- 2. The state is the memory.
- 3. To design a DFA, answer the question: What minimal info needed to solve problem.

Simulating NFA

Example the first revisited

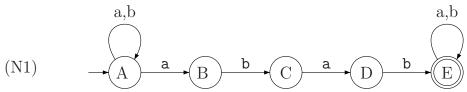


a,b

a,b

The state of the NFA

It is easy to state that the state of the automata is the states that it might be situated at.



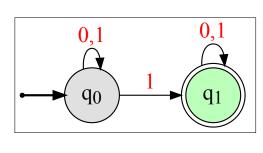
configuration: A set of states the automata might be in.

Possible configurations: \emptyset , $\{A\}$, $\{A,B\}$...

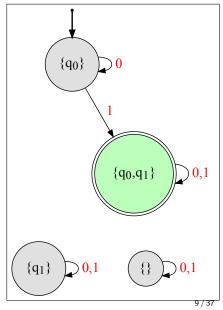
Big idea: Build a DFA on the configurations.

Example: Subset construction

DFA:



NFA:



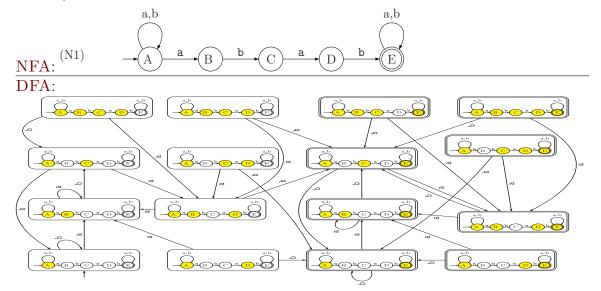
Simulating an NFA by a DFA

- ▶ Think of a program with fixed memory that needs to simulate NFA N on input w.
- ▶ What does it need to store after seeing a prefix x of w?
- ▶ It needs to know at least $\delta^*(s, x)$, the set of states that N could be in after reading x
- ▶ Is it sufficient? Yes, if it can compute $\delta^*(s, xa)$ after seeing another symbol a in the input.
- ▶ When should the program accept a string **w**? If $\delta^*(s, w) \cap A \neq \emptyset$.

Key Observation: DFA M simulating N should know current configuration of N.

State space of the DFA is $\mathcal{P}(Q)$.

Example: DFA from NFA



Formal Tuple Notation for NFA

Definition 5.3.

A non-deterministic finite automata (NFA) $N = (Q, \Sigma, \delta, s, A)$ is a five tuple where

- Q is a finite set whose elements are called states,
- Σ is a finite set called the input alphabet,
- δ : Q × Σ ∪ {ε} → \mathcal{P} (Q) is the transition function (here \mathcal{P} (Q) is the power set of Q),
- $ightharpoonup s \in Q$ is the start state,
- $ightharpoonup A \subseteq Q$ is the set of accepting/final states.

 $\delta(\mathbf{q}, \mathbf{a})$ for $\mathbf{a} \in \mathbf{\Sigma} \cup \{\epsilon\}$ is a subset of \mathbf{Q} — a set of states.

Intro. Algorithms & Models of Computation

CS/ECE 374A, Fall 2022

5.1.2

Algorithm for converting NFA to DFA

Recall I

Extending the transition function to strings

Definition 5.4.

For NFA $N = (Q, \Sigma, \delta, s, A)$ and $q \in Q$ the ϵ -reach(q) is the set of all states that q can reach using only ϵ -transitions.

Definition 5.5.

Inductive definition of $\delta^* : \mathbf{Q} \times \mathbf{\Sigma}^* \to \mathcal{P}(\mathbf{Q})$:

- ightharpoonup if $\mathbf{w} = \varepsilon$, $\delta^*(\mathbf{q}, \mathbf{w}) = \epsilon \operatorname{reach}(\mathbf{q})$
- ▶ if w = a where a ∈ Σ: $δ^*(q, a) = ε$ reach $\left(\bigcup_{p ∈ ε$ reach $(q)} δ(p, a)\right)$
- ▶ if $\mathbf{w} = \mathbf{a}\mathbf{x}$: $\delta^*(\mathbf{q}, \mathbf{w}) = \epsilon \operatorname{reach}\left(\bigcup_{\mathbf{p} \in \epsilon \operatorname{reach}(\mathbf{q})} \bigcup_{\mathbf{r} \in \delta^*(\mathbf{p}, \mathbf{a})} \delta^*(\mathbf{r}, \mathbf{x})\right)$

Recall II

Formal definition of language accepted by N

Definition 5.6.

A string **w** is accepted by NFA **N** if $\delta_N^*(s, w) \cap A \neq \emptyset$.

Definition 5.7.

The language L(N) accepted by a NFA $N = (Q, \Sigma, \delta, s, A)$ is

$$\{ w \in \Sigma^* \mid \delta^*(s, w) \cap A \neq \emptyset \}.$$

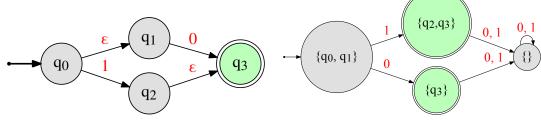
Subset Construction

NFA $N = (Q, \Sigma, s, \delta, A)$. We create a DFA $D = (Q', \Sigma, \delta', s', A')$ as follows:

- $ightharpoonup Q' = \mathcal{P}(Q)$
- $ightharpoonup \mathbf{s}' = \epsilon \operatorname{reach}(\mathbf{s}) = \delta^*(\mathbf{s}, \epsilon)$
- ▶ $\delta'(X, a) = \cup_{q \in X} \delta^*(q, a)$ for each $X \subseteq Q$, $a \in \Sigma$.

Incremental construction

Only build states reachable from $s' = \epsilon \operatorname{reach}(s)$ the start state of **D**



$$\delta'(\mathsf{X},\mathsf{a}) = \cup_{\mathsf{q} \in \mathsf{X}} \delta^*(\mathsf{q},\mathsf{a}).$$

An optimization: Incremental algorithm

- ▶ Build **D** beginning with start state $s' == \epsilon \operatorname{reach}(s)$
- For each existing state $X \subseteq Q$ consider each $a \in \Sigma$ and calculate the state $U = \delta'(X, a) = \bigcup_{q \in X} \delta^*(q, a)$ and add a transition.

To compute $\mathbf{Z}_{\mathbf{q},\mathbf{a}} = \delta^*(\mathbf{q},\mathbf{a})$ - set of all states reached from \mathbf{q} on character \mathbf{a}

- $\qquad \qquad \mathsf{Compute} \ \mathsf{Y}_1 = \cup_{\mathsf{p} \in \mathsf{X}_1} \delta(\mathsf{p},\mathsf{a})$
- ► Compute $Z_{q,a} = \epsilon \operatorname{reach}(Y) = \bigcup_{r \in Y_1} \epsilon \operatorname{reach}(r)$
- If U is a new state add it to reachable states that need to be explored.

Intro. Algorithms & Models of Computation

CS/ECE 374A, Fall 2022

5.1.3

Proof of correctness of conversion of NFA to DFA

Proof of Correctness

Theorem 5.8.

Let $N = (Q, \Sigma, s, \delta, A)$ be a NFA and let $D = (Q', \Sigma, \delta', s', A')$ be a DFA constructed from N via the subset construction. Then L(N) = L(D).

Stronger claim:

Lemma 5.9.

For every string **w**, $\delta_{N}^{*}(s, w) = \delta_{D}^{*}(s', w)$.

Proof by induction on $|\mathbf{w}|$.

Proof continued I

Lemma 5.10.

For every string \mathbf{w} , $\delta_{\mathbf{N}}^{*}(\mathbf{s}, \mathbf{w}) = \delta_{\mathbf{D}}^{*}(\mathbf{s}', \mathbf{w})$.

Proof:

Base case: $w = \epsilon$.

$$\delta_{N}^{*}(\mathbf{s}, \epsilon) = \epsilon \operatorname{reach}(\mathbf{s}).$$

$$\delta_{D}^{*}(s', \epsilon) = s' = \epsilon \operatorname{reach}(s)$$
 by definition of s' .

Proof continued II

Lemma 5.11.

For every string \mathbf{w} , $\delta_{\mathbf{N}}^*(\mathbf{s}, \mathbf{w}) = \delta_{\mathbf{D}}^*(\mathbf{s}', \mathbf{w})$.

Inductive step: w = xa (Note: suffix definition of strings)

 $\delta_{N}^{*}(s, xa) = \bigcup_{p \in \delta_{N}^{*}(s, x)} \delta_{N}^{*}(p, a)$ by inductive definition of $\delta_{N}^{*}(s', xa) = \delta_{D}(\delta_{D}^{*}(s, x), a)$ by inductive definition of δ_{D}^{*}

By inductive hypothesis: $\mathbf{Y} = \delta_{\mathbf{N}}^*(\mathbf{s}, \mathbf{x}) = \delta_{\mathbf{D}}^*(\mathbf{s}, \mathbf{x})$

Thus $\delta_N^*(s, xa) = \bigcup_{p \in Y} \delta_N^*(p, a) = \delta_D(Y, a)$ by definition of δ_D .

Therefore,

 $\delta_N^*(s,xa) = \delta_D(Y,a) = \delta_D(\delta_D^*(s,x),a) = \delta_M^*(s',xa).$ which is what we need.

Intro. Algorithms & Models of Computation

CS/ECE 374A, Fall 2022

5.2

Closure Properties of Regular Languages

Regular Languages

Regular languages have three different characterizations

- Inductive definition via base cases and closure under union, concatenation and Kleene star
- ► Languages accepted by DFAs
- ► Languages accepted by NFAs

Regular language closed under many operations:

- union, concatenation, Kleene star via inductive definition or NFAs
- complement, union, intersection via DFAs
- ▶ homomorphism, inverse homomorphism, reverse, ...

Different representations allow for flexibility in proofs.

Example: PREFIX

Let L be a language over Σ .

Definition 5.1.

 $PREFIX(L) = \{w \mid wx \in L, x \in \Sigma^*\}$

Theorem 5.2.

If L is regular then PREFIX(L) is regular.

Let $M = (Q, \Sigma, \delta, s, A)$ be a DFA that recognizes L

 $X = \{q \in Q \mid s \text{ can reach } q \text{ in } M\} \ Y = \{q \in Q \mid q \text{ can reach some state in } A\}$

 $Z = X \cap Y$

Create new DFA $M' = (Q, \Sigma, \delta, s, Z)$

Claim: L(M') = PREFIX(L).

Exercise: SUFFIX

Let L be a language over Σ .

Definition 5.3.

$$\mathsf{SUFFIX}(\mathsf{L}) = \{ \mathsf{w} \mid \mathsf{xw} \in \mathsf{L}, \mathsf{x} \in \mathsf{\Sigma}^* \}$$

Prove the following:

Theorem 5.4.

If L is regular then PREFIX(L) is regular.

Exercise: SUFFIX

An alternative "proof" using a figure

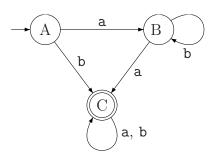
Intro. Algorithms & Models of Computation

CS/ECE 374A, Fall 2022

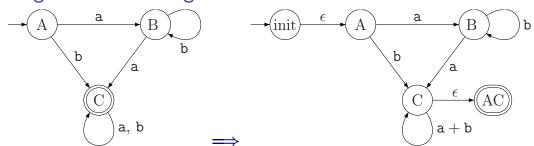
5.3

Algorithm for converting NFA into regular expression

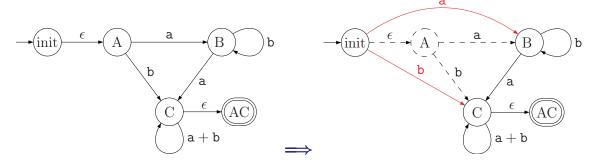
Stage 0: Input



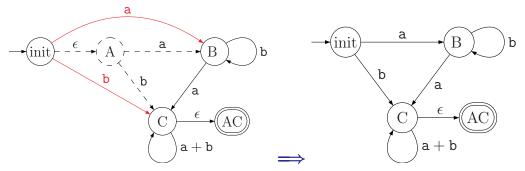
Stage 1: Normalizing



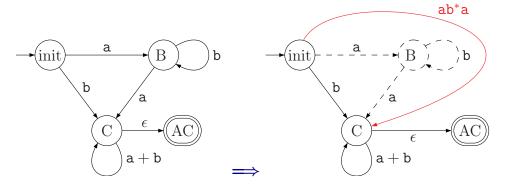
Stage 2: Remove state A



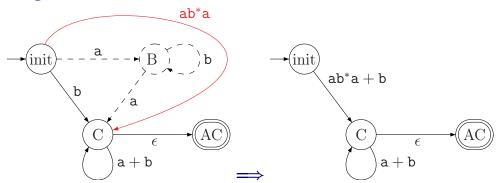
Stage 4: Redrawn without old edges



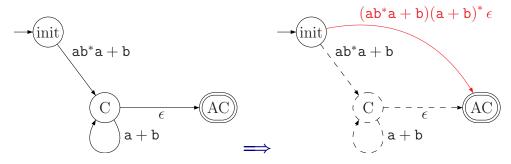
Stage 4: Removing B



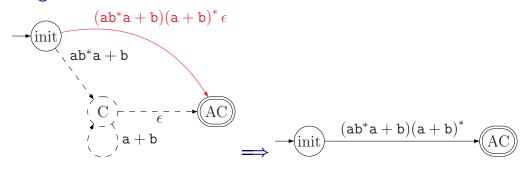
Stage 5: Redraw



Stage 6: Removing C



Stage 7: Redraw



Stage 8: Extract regular expression

$$- \underbrace{(\text{init}) \quad (ab^*a + b)(a + b)^*}_{} + \underbrace{(AC)}_{}$$

Thus, this automata is equivalent to the regular expression

$$(ab^*a + b)(a + b)^*$$
.