Intro. Algorithms & Models of Computation

CS/ECE 374A, Fall 2022

Strings and Languages

Lecture 1 Tuesday, August 23, 2022

LATEXed: October 13, 2022 14:18

Intro. Algorithms & Models of Computation

CS/ECE 374A, Fall 2022

1.1Strings

Alphabet

An alphabet is a **finite** set of symbols.

Examples of alphabets

- $\triangleright \Sigma = \{0,1\},\$
- $ightharpoonup \Sigma = \{a, b, c, \ldots, z\},$
- ► ASCII.
- ► UTF8.
- $\triangleright \Sigma = \{\langle \text{moveforward} \rangle, \langle \text{moveback} \rangle\}$

Alphabet

An alphabet is a **finite** set of symbols.

Examples of alphabets:

- ▶ $\Sigma = \{0, 1\},$
- $ightharpoonup \Sigma = \{a, b, c, \ldots, z\},$
- ► ASCII.
- ► UTF8.
- $\triangleright \Sigma = \{\langle \text{moveforward} \rangle, \langle \text{moveback} \rangle\}$

String Definitions

Definition 1.1.

- 1. A string/word over Σ is a **finite sequence** of symbols over Σ . For example, '0101001', 'string', '(moveback) (rotate90)'
- 2. ϵ is the empty string.
- 3. The length of a string **w** (denoted by $|\mathbf{w}|$) is the number of symbols in **w**. For example, $|\mathbf{101}| = \mathbf{3}$, $|\epsilon| = \mathbf{0}$
- 4. For integer $n \geq 0$, Σ^n is set of all strings over Σ of length n. Σ^* is the set of all strings over Σ .

Inductive/recursive definition of strings

Formal definition of a string:

- $ightharpoonup \epsilon$ is a string of length 0
- ▶ ax is a string if $a \in \Sigma$ and x is a string. The length of ax is 1 + |x|

The above definition helps prove statements rigorously via induction.

Alternative recursive definition useful in some proofs: xa is a string if $a \in \Sigma$ and x is a string. The length of xa is 1 + |x|

Convention

- \triangleright a, b, c, ... denote elements of Σ
- \triangleright w, x, y, z, ... denote strings
- ► A, B, C, . . . denote sets of strings

Much ado about nothing

- $ightharpoonup \epsilon$ is a string containing no symbols. It is not a set
- $ightharpoonup \{\epsilon\}$ is a set containing one string: the empty string. It is a set, not a string.
- \blacktriangleright Ø is the empty set. It contains no strings.
- \triangleright { \emptyset } is a set containing one element, which itself is a set that contains no elements.

- If x and y are strings then xy denotes their concatenation.
- concatenation defined recursively :
 - ightharpoonup xy = y if x = ϵ
 - ightharpoonup xy = a(wy) if x = aw
- \triangleright xy sometimes written as $x \cdot y$.
- ► concatenation is <u>associative</u>: (uv)w = u(vw)hence write $uvw \equiv (uv)w = u(vw)$
- **not** commutative: **uv** not necessarily equal to **vu**
- ▶ The identity element is the empty string ϵ :

$$\epsilon u = u\epsilon = u$$

- If x and y are strings then xy denotes their concatenation.
- concatenation defined recursively :
 - ightharpoonup xy = y if x = ϵ
 - ightharpoonup xy = a(wy) if x = aw
- ▶ xy sometimes written as x y.
- Concatenation is <u>associative</u>: (uv)w = u(vw) hence write uvw ≡ (uv)w = u(vw)
- **not** commutative: **uv** not necessarily equal to **vu**
- ▶ The identity element is the empty string ϵ :

$$\epsilon u = u\epsilon = u$$

- ▶ If x and y are strings then xy denotes their concatenation.
- concatenation defined recursively :
 - \Rightarrow xy = y if x = ϵ \Rightarrow xy = a(wy) if x = aw
- ▶ xy sometimes written as x y.
- concatenation is <u>associative</u>: (uv)w = u(vw)hence write $uvw \equiv (uv)w = u(vw)$
- **not** commutative: **uv** not necessarily equal to **vu**
- ▶ The identity element is the empty string ϵ :

$$\epsilon u = u \epsilon = u$$
.

- ▶ If x and y are strings then xy denotes their concatenation.
- concatenation defined recursively :
 - \Rightarrow xy = y if x = ϵ \Rightarrow xy = a(wy) if x = aw
- ► xy sometimes written as x y.
- ► concatenation is <u>associative</u>: (uv)w = u(vw)hence write $uvw \equiv (uv)w = u(vw)$
- **not** commutative: **uv** not necessarily equal to **vu**
- ▶ The identity element is the empty string ϵ :

$$\epsilon u = u\epsilon = u$$
.

- If x and y are strings then xy denotes their concatenation.
- concatenation defined recursively :
 - ightharpoonup xy = y if x = ϵ
 - ightharpoonup xy = a(wy) if x = aw
- ➤ xy sometimes written as x y.
- concatenation is <u>associative</u>: (uv)w = u(vw)hence write $uvw \equiv (uv)w = u(vw)$
- not commutative: uv not necessarily equal to vu
- ▶ The identity element is the empty string ϵ :

$$\epsilon u = u\epsilon = u$$
.

Substrings, prefix, suffix

Definition 1.2.

- **v** is **substring** of **w** \iff there exist strings **x**, **y** such that **w** = **xvy**.
 - ▶ If $\mathbf{x} = \epsilon$ then \mathbf{v} is a prefix of \mathbf{w}
 - ▶ If $\mathbf{y} = \epsilon$ then \mathbf{v} is a suffix of \mathbf{w}

String exponents

Definition 1.3.

If \mathbf{w} is a string then $\mathbf{w}^{\mathbf{n}}$ is defined inductively as follows:

$$\mathbf{w}^{\mathbf{n}} = \epsilon \text{ if } \mathbf{n} = \mathbf{0}$$

 $\mathbf{w}^{\mathbf{n}} = \mathbf{w}\mathbf{w}^{\mathbf{n}-1} \text{ if } \mathbf{n} > \mathbf{0}$

Example: $(blah)^4 = blahblahblah$.

Set Concatenation

Definition 1.4.

Given two sets X and Y of strings (over some common alphabet Σ) the <u>concatenation</u> of X and Y is

$$XY = \{xy \mid x \in X, y \in Y\}$$

Set Concatenation

Definition 1.4.

Given two sets X and Y of strings (over some common alphabet Σ) the <u>concatenation</u> of X and Y is

$$XY = \{xy \mid x \in X, y \in Y\}$$

Example 1.5.

 $X = \{fido, rover, spot\},\$

 $Y = \{fluffy, tabby\}$

 \Longrightarrow

 $XY = \{fidofluffy, fidotabby, roverfluffy, \ldots\}.$

Σ* and languages

Definition 1.6.

- 1. Σ^n is the set of all strings of length **n**. Defined inductively:
 - $\Sigma^{n} = \{\epsilon\} \text{ if } n = 0$ $\Sigma^{n} = \Sigma \Sigma^{n-1} \text{ if } n > 0$
- 2. $\Sigma^* = \cup_{n \geq 0} \Sigma^n$ is the set of all finite length strings
- 3. $\Sigma^+ = \bigcup_{n>1} \Sigma^n$ is the set of non-empty strings.

A language L is a set of strings over Σ . In other words L $\subseteq \Sigma^*$.

Σ* and languages

Definition 1.6.

1. Σ^n is the set of all strings of length **n**. Defined inductively:

$$\Sigma^{n} = \{\epsilon\} \text{ if } n = 0$$

 $\Sigma^{n} = \Sigma \Sigma^{n-1} \text{ if } n > 0$

- 2. $\Sigma^* = \cup_{n \geq 0} \Sigma^n$ is the set of all finite length strings
- 3. $\Sigma^+ = \bigcup_{n \ge 1} \Sigma^n$ is the set of non-empty strings.

Definition 1.7

A language L is a set of strings over Σ . In other words $L \subseteq \Sigma^*$.

- 1. What is Σ^0 ?
- 2. How many elements are there in Σ^3 ?
- 3. How many elements are there in Σ^n ?
- 4. What is the length of the longest string in Σ ?
- 5. Does **∑*** have strings of infinite length?
- 6. If $|\mathbf{u}| = 2$ and $|\mathbf{v}| = 3$ then what is $|\mathbf{u} \cdot \mathbf{v}|$?
- 7. Let **u** be an arbitrary string in Σ^* . What is $\epsilon \mathbf{u}$? What is $\mathbf{u}\epsilon$?
- 8. Is uv = vu for every $u, v \in \Sigma^*$?
- 9. Is (uv)w = u(vw) for every $u, v, w \in \Sigma^*$?

Intro. Algorithms & Models of Computation

CS/ECE 374A, Fall 2022

1.1.1

Exercise solved in detail

- 1. What is Σ^0 ?
- 2. How many elements are there in Σ^3 ?
- 3. How many elements are there in Σ^n ?
- 4. What is the length of the longest string in Σ ?
- 5. Does Σ^* have strings of infinite length?
- 6. If $|\mathbf{u}| = 2$ and $|\mathbf{v}| = 3$ then what is $|\mathbf{u} \cdot \mathbf{v}|$?
- 7. Let **u** be an arbitrary string in Σ^* . What is $\epsilon \mathbf{u}$? What is $\mathbf{u}\epsilon$?
- 8. Is uv = vu for every $u, v \in \Sigma^*$?
- 9. Is (uv)w = u(vw) for every $u, v, w \in \Sigma^*$?

- 1. What is Σ^0 ?
- 2. How many elements are there in Σ^3 ?
- 3. How many elements are there in Σ^n ?
- 4. What is the length of the longest string in Σ ?
- 5. Does Σ^* have strings of infinite length?
- 6. If $|\mathbf{u}| = 2$ and $|\mathbf{v}| = 3$ then what is $|\mathbf{u} \cdot \mathbf{v}|$?
- 7. Let **u** be an arbitrary string in Σ^* . What is $\epsilon \mathbf{u}$? What is $\mathbf{u}\epsilon$?
- 8. Is uv = vu for every $u, v \in \Sigma^*$?
- 9. Is (uv)w = u(vw) for every $u, v, w \in \Sigma^*$?

- 1. What is Σ^0 ?
- 2. How many elements are there in Σ^3 ?
- 3. How many elements are there in Σ^n ?
- 4. What is the length of the longest string in Σ ?
- 5. Does Σ^* have strings of infinite length?
- 6. If $|\mathbf{u}| = 2$ and $|\mathbf{v}| = 3$ then what is $|\mathbf{u} \cdot \mathbf{v}|$?
- 7. Let **u** be an arbitrary string in Σ^* . What is $\epsilon \mathbf{u}$? What is $\mathbf{u}\epsilon$?
- 8. Is uv = vu for every $u, v \in \Sigma^*$?
- 9. Is (uv)w = u(vw) for every $u, v, w \in \Sigma^*$?

- 1. What is Σ^0 ?
- 2. How many elements are there in Σ^3 ?
- 3. How many elements are there in Σ^n ?
- 4. What is the length of the longest string in Σ ?
- 5. Does Σ^* have strings of infinite length?
- 6. If $|\mathbf{u}| = 2$ and $|\mathbf{v}| = 3$ then what is $|\mathbf{u} \cdot \mathbf{v}|$?
- 7. Let **u** be an arbitrary string in Σ^* . What is $\epsilon \mathbf{u}$? What is $\mathbf{u}\epsilon$?
- 8. Is uv = vu for every $u, v \in \Sigma^*$?
- 9. Is (uv)w = u(vw) for every $u, v, w \in \Sigma^*$?

- 1. What is Σ^0 ?
- 2. How many elements are there in Σ^3 ?
- 3. How many elements are there in Σ^n ?
- 4. What is the length of the longest string in Σ ?
- 5. Does Σ* have strings of infinite length?
- 6. If $|\mathbf{u}| = 2$ and $|\mathbf{v}| = 3$ then what is $|\mathbf{u} \cdot \mathbf{v}|$?
- 7. Let **u** be an arbitrary string in Σ^* . What is $\epsilon \mathbf{u}$? What is $\mathbf{u}\epsilon$?
- 8. Is uv = vu for every $u, v \in \Sigma^*$?
- 9. Is (uv)w = u(vw) for every $u, v, w \in \Sigma^*$?

- 1. What is Σ^0 ?
- 2. How many elements are there in Σ^3 ?
- 3. How many elements are there in Σ^n ?
- 4. What is the length of the longest string in Σ ?
- 5. Does Σ* have strings of infinite length?
- 6. If $|\mathbf{u}| = 2$ and $|\mathbf{v}| = 3$ then what is $|\mathbf{u} \cdot \mathbf{v}|$?
- 7. Let **u** be an arbitrary string in Σ^* . What is $\epsilon \mathbf{u}$? What is $\mathbf{u}\epsilon$?
- 8. Is uv = vu for every $u, v \in \Sigma^*$?
- 9. Is (uv)w = u(vw) for every $u, v, w \in \Sigma^*$?

- 1. What is Σ^0 ?
- 2. How many elements are there in Σ^3 ?
- 3. How many elements are there in Σ^n ?
- 4. What is the length of the longest string in Σ ?
- 5. Does **∑*** have strings of infinite length?
- 6. If $|\mathbf{u}| = 2$ and $|\mathbf{v}| = 3$ then what is $|\mathbf{u} \cdot \mathbf{v}|$?
- 7. Let **u** be an arbitrary string in Σ^* . What is $\epsilon \mathbf{u}$? What is $\mathbf{u}\epsilon$?
- 8. Is uv = vu for every $u, v \in \Sigma^*$?
- 9. Is (uv)w = u(vw) for every $u, v, w \in \Sigma^*$?

- 1. What is Σ^0 ?
- 2. How many elements are there in Σ^3 ?
- 3. How many elements are there in Σ^n ?
- 4. What is the length of the longest string in Σ ?
- 5. Does **∑*** have strings of infinite length?
- 6. If $|\mathbf{u}| = 2$ and $|\mathbf{v}| = 3$ then what is $|\mathbf{u} \cdot \mathbf{v}|$?
- 7. Let **u** be an arbitrary string in Σ^* . What is $\epsilon \mathbf{u}$? What is $\mathbf{u}\epsilon$?
- 8. Is uv = vu for every $u, v \in \Sigma^*$?
- 9. Is (uv)w = u(vw) for every $u, v, w \in \Sigma^*$?

- 1. What is Σ^0 ?
- 2. How many elements are there in Σ^3 ?
- 3. How many elements are there in Σ^n ?
- 4. What is the length of the longest string in Σ ?
- 5. Does Σ* have strings of infinite length?
- 6. If $|\mathbf{u}| = 2$ and $|\mathbf{v}| = 3$ then what is $|\mathbf{u} \cdot \mathbf{v}|$?
- 7. Let **u** be an arbitrary string in Σ^* . What is $\epsilon \mathbf{u}$? What is $\mathbf{u}\epsilon$?
- 8. Is uv = vu for every $u, v \in \Sigma^*$?
- 9. Is (uv)w = u(vw) for every $u, v, w \in \Sigma^*$?

Intro. Algorithms & Models of Computation

CS/ECE 374A, Fall 2022

1.2

Countable sets, countably infinite sets, and languages

Definition 1.1.

A set X is countable, if its elements can be counted.

There exists an injective mapping from X to natural numbers $N = \{1, 2, 3, \ldots\}$.

Example 1.2

All finite sets are countable: {aba, ima, saba, safta, uma, upa}

Example 1.3

 $\mathbb{N} \times \mathbb{N} = \{(\mathbf{i}, \mathbf{j}) \mid \mathbf{i}, \mathbf{j} \in \mathbb{N}\}$ is countable.

Definition 1.1.

A set **X** is countable, if its elements can be counted.

There exists an injective mapping from X to natural numbers $N = \{1, 2, 3, \ldots\}$.

Example 1.2.

All finite sets are countable: {aba, ima, saba, safta, uma, upa}.

Example 1.3.

 $\mathbb{N} \times \mathbb{N} = \{(i,j) \mid i,j \in \mathbb{N}\}$ is countable.

Definition 1.1.

A set **X** is countable, if its elements can be counted.

There exists an injective mapping from X to natural numbers $N = \{1, 2, 3, \ldots\}$.

Example 1.2.

All finite sets are countable: {aba, ima, saba, safta, uma, upa}.

Example 1.3.

 $\mathbb{N} \times \mathbb{N} = \{(\mathbf{i}, \mathbf{j}) \mid \mathbf{i}, \mathbf{j} \in \mathbb{N}\}$ is countable.

Definition 1.1.

A set X is countable, if its elements can be counted.

There exists an injective mapping from X to natural numbers $N = \{1, 2, 3, \ldots\}$.

Example 1.2.

All finite sets are countable: {aba, ima, saba, safta, uma, upa}.

Example 1.3.

 $\mathbb{N} \times \mathbb{N} = \{(\mathbf{i}, \mathbf{j}) \mid \mathbf{i}, \mathbf{j} \in \mathbb{N}\}$ is countable.

$\mathbb{N} \times \mathbb{N}$ is countable

• • • • • • •

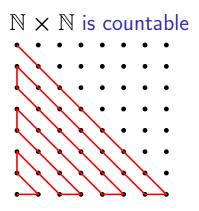
.

• • • • • • •

• • • • • • •

.

• • • • • • •



Canonical order and countability of strings

Definition 1.4.

A set X is countably infinite (countable and infinite) if there is a bijection f between the natural numbers and X.

Alternatively: **X** is countably infinite if **X** is an infinite set and there enumeration of elements of **X**.

Theorem 1.5.

 Σ^* is countable for any finite Σ .

```
Example: \{0,1\}^* = \{\epsilon,0,1,00,01,10,11,000,001,010,\ldots\}
\{\mathbf{a},\mathbf{b},\mathbf{c}\}^* = \{\epsilon,\mathbf{a},\mathbf{b},\mathbf{c},\mathbf{aa},\mathbf{ab},\mathbf{ac},\mathbf{ba},\mathbf{bb},\mathbf{bc},\ldots\}
```

Theorem 1.5.

 Σ^* is countable for any finite Σ .

```
Example: \{0,1\}^* = \{\epsilon,0,1,00,01,10,11,000,001,010,\ldots\}
\{a,b,c\}^* = \{\epsilon,a,b,c,aa,ab,ac,ba,bb,bc,\ldots\}
```

Theorem 1.5.

 Σ^* is countable for any finite Σ .

```
Example: \{0,1\}^* = \{\epsilon,0,1,00,01,10,11,000,001,010,\ldots\}. \{a,b,c\}^* = \{\epsilon,a,b,c,aa,ab,ac,ba,bb,bc,\ldots\}
```

Theorem 1.5.

 Σ^* is countable for any finite Σ .

```
Example: \{0,1\}^* = \{\epsilon,0,1,00,01,10,11,000,001,010,\ldots\}. \{a,b,c\}^* = \{\epsilon,a,b,c,aa,ab,ac,ba,bb,bc,\ldots\}
```

Exercise I

Question: Is $\Sigma^* \times \Sigma^* = \{(x, y) \mid x, y \in \Sigma^*\}$ countable?

Question: Is $\Sigma^* \times \Sigma^* \times \Sigma^* = \{(x, y, z) \mid x, y, x \in \Sigma^*\}$ countable?

Exercise I

Question: Is $\Sigma^* \times \Sigma^* = \{(x, y) \mid x, y \in \Sigma^*\}$ countable?

Question: Is $\Sigma^* \times \Sigma^* \times \Sigma^* = \{(x, y, z) \mid x, y, x \in \Sigma^*\}$ countable?

Exercise II

Answer the following questions taking $\Sigma = \{0, 1\}$.

- 1. Is a finite set countable?
- 2. **X** is countable, and the set $Y \subseteq X$, then is the set **Y** countable?
- 3. If **X** and **Y** are countable, is **X** \ **Y** countable?
- 4. Are all infinite sets countably infinite?
- 5. If X_i is a countable infinite set, for $i = 1, \dots, 700$, is $\bigcup_i X_i$ countable infinite?
- 6. If X_i is a countable infinite set, for $i = 1, ..., is \cup_i X_i$ countable infinite?
- 7. Let X be a countable infinite set, and consider its power set

$$2^{X} = \{Y \mid Y \subseteq x\}.$$

The statement "the set 2^x is countable" is correct?

Intro. Algorithms & Models of Computation

CS/ECE 374A, Fall 2022

1.3 Inductive proofs on strings

Inductive proofs on strings

Inductive proofs on strings and related problems follow inductive definitions.

Definition 1.1.

The reverse \mathbf{w}^{R} of a string \mathbf{w} is defined as follows:

- $\mathbf{w}^{\mathsf{R}} = \epsilon \text{ if } \mathbf{w} = \epsilon$
- $\mathbf{w}^{\mathsf{R}} = \mathbf{x}^{\mathsf{R}} \mathbf{a}$ if $\mathbf{w} = \mathbf{a} \mathbf{x}$ for some $\mathbf{a} \in \mathbf{\Sigma}$ and string \mathbf{x}

Prove that for any strings $\mathbf{u}, \mathbf{v} \in \mathbf{\Sigma}^*$, $(\mathbf{u}\mathbf{v})^R = \mathbf{v}^R \mathbf{u}^R$.

Example: $(dog \cdot cat)^R = (cat)^R \cdot (dog)^R = tacgod$.

Inductive proofs on strings

Inductive proofs on strings and related problems follow inductive definitions.

Definition 1.1.

The reverse \mathbf{w}^{R} of a string \mathbf{w} is defined as follows:

- $\mathbf{w}^{R} = \epsilon \text{ if } \mathbf{w} = \epsilon$
- $\mathbf{w}^{\mathsf{R}} = \mathbf{x}^{\mathsf{R}} \mathbf{a}$ if $\mathbf{w} = \mathbf{a} \mathbf{x}$ for some $\mathbf{a} \in \mathbf{\Sigma}$ and string \mathbf{x}

Theorem 1.2.

Prove that for any strings $\mathbf{u}, \mathbf{v} \in \mathbf{\Sigma}^*$, $(\mathbf{u}\mathbf{v})^R = \mathbf{v}^R \mathbf{u}^R$.

Example: $(\mathbf{dog} \cdot \mathbf{cat})^{R} = (\mathbf{cat})^{R} \cdot (\mathbf{dog})^{R} = \mathbf{tacgod}$.

Principle of mathematical induction

Induction is a way to prove statements of the form $\forall n \geq 0, P(n)$ where P(n) is a statement that holds for integer n.

Example: Prove that $\sum_{i=0}^{n} i = n(n+1)/2$ for all n.

Induction template:

- ► Base case: Prove P(0)
- ▶ Induction hypothesis: Let k > 0 be an arbitrary integer. Assume that P(n) holds for any $n \le k$.
- ▶ Induction Step: Prove that P(n) holds, for n = k + 1.

Structured induction

- 1. Unlike simple cases we are working with...
- 2. ...induction proofs also work for more complicated "structures".
- 3. Such as strings, tuples of strings, graphs etc.
- 4. See class notes on induction for details.

Proving the theorem

Theorem 1.3.

Prove that for any strings $\mathbf{u}, \mathbf{v} \in \mathbf{\Sigma}^*$, $(\mathbf{u}\mathbf{v})^R = \mathbf{v}^R \mathbf{u}^R$.

```
Proof: by induction.
On what?? |\mathbf{u}\mathbf{v}| = |\mathbf{u}| + |\mathbf{v}|? |\mathbf{u}|? |\mathbf{v}|?
```

What does it mean "induction on |u|"?

1.3.1: Three proofs by induction

$1.3.1.1 : \mathsf{Induction} \,\, \mathsf{on} \,\, |\mathbf{u}|$

By induction on |u|

Theorem 1.4.

Prove that for any strings $\mathbf{u}, \mathbf{v} \in \mathbf{\Sigma}^*$, $(\mathbf{u}\mathbf{v})^R = \mathbf{v}^R \mathbf{u}^R$.

Proof by induction on $|\mathbf{u}|$ means that we are proving the following.

Base case: Let \mathbf{u} be an arbitrary string of length $\mathbf{0}$. $\mathbf{u} = \boldsymbol{\epsilon}$ since there is only one such string. Then

$$(uv)^R = (\epsilon v)^R = v^R = v^R \epsilon = v^R \epsilon^R = v^R u^R$$

Induction hypothesis: $\forall n \geq 0$, for any string **u** of length **n**:

For all strings $\mathbf{v} \in \mathbf{\Sigma}^*$, $(\mathbf{u}\mathbf{v})^R = \mathbf{v}^R \mathbf{u}^R$.

No assumption about \mathbf{v} , hence statement holds for all $\mathbf{v} \in \mathbf{\Sigma}^*$.

By induction on |u|

Theorem 1.4.

Prove that for any strings $\mathbf{u}, \mathbf{v} \in \mathbf{\Sigma}^*$, $(\mathbf{u}\mathbf{v})^R = \mathbf{v}^R \mathbf{u}^R$.

Proof by induction on $|\mathbf{u}|$ means that we are proving the following.

Base case: Let ${\bf u}$ be an arbitrary string of length ${\bf 0}$. ${\bf u}=\epsilon$ since there is only one such string. Then

$$(uv)^R = (\epsilon v)^R = v^R = v^R \epsilon = v^R \epsilon^R = v^R u^R$$

Induction hypothesis: $\forall n \geq 0$, for any string **u** of length **n**:

For all strings $v \in \Sigma^*$, $(uv)^R = v^R u^R$.

No assumption about \mathbf{v} , hence statement holds for all $\mathbf{v} \in \mathbf{\Sigma}^*$.

By induction on |u|

Theorem 1.4.

Prove that for any strings $\mathbf{u}, \mathbf{v} \in \mathbf{\Sigma}^*$, $(\mathbf{u}\mathbf{v})^R = \mathbf{v}^R \mathbf{u}^R$.

Proof by induction on $|\mathbf{u}|$ means that we are proving the following.

Base case: Let ${\bf u}$ be an arbitrary string of length ${\bf 0}$. ${\bf u}=\epsilon$ since there is only one such string. Then

$$(uv)^R = (\epsilon v)^R = v^R = v^R \epsilon = v^R \epsilon^R = v^R u^R$$

Induction hypothesis: $\forall n \geq 0$, for any string **u** of length **n**:

For all strings $v \in \Sigma^*$, $(uv)^R = v^R u^R$.

No assumption about \mathbf{v} , hence statement holds for all $\mathbf{v} \in \mathbf{\Sigma}^*$.

- Let \mathbf{u} be an arbitrary string of length $\mathbf{n} > \mathbf{0}$. Assume inductive hypothesis holds for all strings \mathbf{w} of length $< \mathbf{n}$.
- ▶ Since |u| = n > 0 we have u = ay for some string y with |y| < n and a ∈ Σ.
- ► Then

$$(uv)^{R} = ((ay)v)^{R}$$

$$= (a(yv))^{R}$$

$$= (yv)^{R}a^{R}$$

$$= (v^{R}y^{R})a^{R}$$

$$= v^{R}(y^{R}a^{R})$$

$$= v^{R}(ay)^{R}$$

$$= v^{R}u^{R}$$

- Let \mathbf{u} be an arbitrary string of length $\mathbf{n} > \mathbf{0}$. Assume inductive hypothesis holds for all strings \mathbf{w} of length $< \mathbf{n}$.
- ▶ Since |u| = n > 0 we have u = ay for some string y with |y| < n and a ∈ Σ.
- ► Then

$$(uv)^{R} = ((ay)v)^{R}$$

$$= (a(yv))^{R}$$

$$= (yv)^{R}a^{R}$$

$$= (v^{R}y^{R})a^{R}$$

$$= v^{R}(y^{R}a^{R})$$

$$= v^{R}(ay)^{R}$$

$$= v^{R}u^{R}$$

- Let \mathbf{u} be an arbitrary string of length $\mathbf{n} > \mathbf{0}$. Assume inductive hypothesis holds for all strings \mathbf{w} of length $< \mathbf{n}$.
- ▶ Since |u| = n > 0 we have u = ay for some string y with |y| < n and a ∈ Σ.
- ► Then

$$(uv)^{R} = ((ay)v)^{R}$$

$$= (a(yv))^{R}$$

$$= (yv)^{R}a^{R}$$

$$= (v^{R}y^{R})a^{R}$$

$$= v^{R}(y^{R}a^{R})$$

$$= v^{R}(ay)^{R}$$

$$= v^{R}u^{R}$$

1.3.1.2: A failed attempt: Induction on $|\mathbf{v}|$

Induction on |v|

Theorem 1.5.

Prove that for any strings $u, v \in \Sigma^*$, $(uv)^R = v^R u^R$.

Proof by induction on $|\mathbf{v}|$ means that we are proving the following.

Induction hypothesis: $\forall n \geq 0$, for any string v of length n:

For all strings $\mathbf{u} \in \mathbf{\Sigma}^*$, $(\mathbf{u}\mathbf{v})^R = \mathbf{v}^R \mathbf{u}^R$.

Base case: Let \mathbf{v} be an arbitrary string of length $\mathbf{0}$. $\mathbf{v} = \boldsymbol{\epsilon}$ since there is only one such string. Then

$$(uv)^R = (u\epsilon)^R = u^R = \epsilon u^R = \epsilon^R u^R = v^R u^R$$

Induction on |v|

Theorem 1.5.

Prove that for any strings $\mathbf{u}, \mathbf{v} \in \mathbf{\Sigma}^*$, $(\mathbf{u}\mathbf{v})^R = \mathbf{v}^R \mathbf{u}^R$.

Proof by induction on $|\mathbf{v}|$ means that we are proving the following.

Induction hypothesis: $\forall n \geq 0$, for any string v of length n:

For all strings $\mathbf{u} \in \mathbf{\Sigma}^*$, $(\mathbf{u}\mathbf{v})^R = \mathbf{v}^R \mathbf{u}^R$.

Base case: Let \mathbf{v} be an arbitrary string of length $\mathbf{0}$. $\mathbf{v} = \boldsymbol{\epsilon}$ since there is only one such string. Then

$$(uv)^R = (u\epsilon)^R = u^R = \epsilon u^R = \epsilon^R u^R = v^R u^R$$

Induction on |v|

Theorem 1.5.

Prove that for any strings $\mathbf{u}, \mathbf{v} \in \mathbf{\Sigma}^*$, $(\mathbf{u}\mathbf{v})^R = \mathbf{v}^R \mathbf{u}^R$.

Proof by induction on $|\mathbf{v}|$ means that we are proving the following.

Induction hypothesis: $\forall n \geq 0$, for any string v of length n:

For all strings $\mathbf{u} \in \mathbf{\Sigma}^*$, $(\mathbf{u}\mathbf{v})^R = \mathbf{v}^R \mathbf{u}^R$.

Base case: Let ${\bf v}$ be an arbitrary string of length ${\bf 0}$. ${\bf v}=\epsilon$ since there is only one such string. Then

$$(uv)^R = (u\epsilon)^R = u^R = \epsilon u^R = \epsilon^R u^R = v^R u^R$$

- Let v be an arbitrary string of length n > 0. Assume inductive hypothesis holds for all strings w of length < n.
- ▶ Since |v| = n > 0 we have v = ay for some string y with |y| < n and a ∈ Σ.
- ► Then

$$(uv)^{R} = (u(ay))^{R}$$

= $((ua)y)^{R}$
= $y^{R}(ua)^{R}$
= ??

Cannot simplify (ua)^R using inductive hypothesis. Can simplify if we extend base case to include n = 0 and n = 1. However, n = 1 itself requires induction on |u|!

- Let v be an arbitrary string of length n > 0. Assume inductive hypothesis holds for all strings w of length < n.
- ▶ Since |v| = n > 0 we have v = ay for some string y with |y| < n and a ∈ Σ.
- ► Then

$$(uv)^{R} = (u(ay))^{R}$$

= $((ua)y)^{R}$
= $y^{R}(ua)^{R}$
= ??

Cannot simplify (ua)^R using inductive hypothesis. Can simplify if we extend base case to include n = 0 and n = 1. However, n = 1 itself requires induction on |u|!

Theorem 1.6.

Prove that for any strings $u, v \in \Sigma^*$, $(uv)^R = v^R u^R$.

Proof by induction on $|\mathbf{u}|+|\mathbf{v}|$ means that we are proving the following. Induction hypothesis: $\forall n\geq 0$, for any $\mathbf{u},\mathbf{v}\in \Sigma^*$ with $|\mathbf{u}|+|\mathbf{v}|\leq n$, $(\mathbf{u}\mathbf{v})^R=\mathbf{v}^R\mathbf{u}^R$.

Base case: n = 0. Let u, v be an arbitrary strings such that |u| + |v| = 0. Implies $u, v = \epsilon$.

Theorem 1.6.

Prove that for any strings $u, v \in \Sigma^*$, $(uv)^R = v^R u^R$.

Proof by induction on $|\mathbf{u}|+|\mathbf{v}|$ means that we are proving the following. Induction hypothesis: $\forall n\geq 0$, for any $\mathbf{u},\mathbf{v}\in \Sigma^*$ with $|\mathbf{u}|+|\mathbf{v}|\leq n$, $(\mathbf{u}\mathbf{v})^R=\mathbf{v}^R\mathbf{u}^R$.

Base case: n = 0. Let u, v be an arbitrary strings such that |u| + |v| = 0. Implies $u, v = \epsilon$.

Theorem 1.6.

Prove that for any strings $u, v \in \Sigma^*$, $(uv)^R = v^R u^R$.

Proof by induction on |u|+|v| means that we are proving the following. Induction hypothesis: $\forall n \geq 0$, for any $u,v \in \Sigma^*$ with $|u|+|v| \leq n$, $(uv)^R = v^R u^R$.

Base case: n = 0. Let u, v be an arbitrary strings such that |u| + |v| = 0. Implies $u, v = \epsilon$.

Theorem 1.6.

Prove that for any strings $u, v \in \Sigma^*$, $(uv)^R = v^R u^R$.

Proof by induction on |u|+|v| means that we are proving the following. Induction hypothesis: $\forall n \geq 0$, for any $u,v \in \Sigma^*$ with $|u|+|v| \leq n$, $(uv)^R = v^R u^R$.

Base case: n = 0. Let u, v be an arbitrary strings such that |u| + |v| = 0. Implies $u, v = \epsilon$.

Theorem 1.6.

Prove that for any strings $u, v \in \Sigma^*$, $(uv)^R = v^R u^R$.

Proof by induction on |u|+|v| means that we are proving the following. Induction hypothesis: $\forall n \geq 0$, for any $u,v \in \Sigma^*$ with $|u|+|v| \leq n$, $(uv)^R = v^R u^R$.

Base case: n = 0. Let u, v be an arbitrary strings such that |u| + |v| = 0. Implies $u, v = \epsilon$.

Intro. Algorithms & Models of Computation

CS/ECE 374A, Fall 2022

1.4 Languages

Languages

Definition 1.1

A language L is a set of strings over Σ . In other words $L \subseteq \Sigma^*$.

Standard set operations apply to languages

- ▶ For languages A, B the concatenation of A, B is $AB = \{xy \mid x \in A, y \in B\}$.
- ▶ For languages A, B, their union is $A \cup B$, intersection is $A \cap B$, and difference is $A \setminus B$ (also written as A B).
- ► For language $A \subseteq \Sigma^*$ the complement of A is $\bar{A} = \Sigma^* \setminus A$.

Languages

Definition 1.1

A language L is a set of strings over Σ . In other words $L \subseteq \Sigma^*$.

Standard set operations apply to languages.

- ▶ For languages A, B the concatenation of A, B is $AB = \{xy \mid x \in A, y \in B\}$.
- For languages A, B, their union is $A \cup B$, intersection is $A \cap B$, and difference is $A \setminus B$ (also written as A B).
- ▶ For language $A \subseteq \Sigma^*$ the complement of A is $\bar{A} = \Sigma^* \setminus A$.

Exponentiation, Kleene star etc

Definition 1.2.

For a language $\mathbf{L} \subseteq \mathbf{\Sigma}^*$ and $\mathbf{n} \in \mathbb{N}$, define $\mathbf{L}^\mathbf{n}$ inductively as follows.

$$\mathsf{L}^\mathsf{n} = \left\{ \begin{array}{l} \{\epsilon\} & \text{if } \mathsf{n} = 0 \\ \mathsf{L}_{}^\bullet(\mathsf{L}^{\mathsf{n}-1}) & \text{if } \mathsf{n} > 0 \end{array} \right.$$

And define $L^* = \bigcup_{n>0} L^n$, and $L^+ = \bigcup_{n>1} L^n$

Exercise

Problem 1.3.

Answer the following questions taking $A, B \subseteq \{0, 1\}^*$.

- 1. Is $\epsilon = {\epsilon}$? Is $\emptyset = {\epsilon}$?
- 2. What is $\emptyset \bullet A$? What is $A \bullet \emptyset$?
- 3. What is $\{\epsilon\} \bullet A$? And $A \bullet \{\epsilon\}$?
- 4. If |A| = 2 and |B| = 3, what is $|A \cdot B|$?

Exercise

Problem 1.4.

Consider languages over $\Sigma = \{0, 1\}$.

- 1. What is \emptyset^0 ?
- 2. If $|\mathbf{L}| = 2$, then what is $|\mathbf{L}^4|$?
- 3. What is \emptyset^* , $\{\epsilon\}^*$, ϵ^* ?
- 4. For what **L** is **L*** finite?
- 5. What is \emptyset^+ , $\{\epsilon\}^+$, ϵ^+ ?

What are we interested in computing? Mostly functions.

Informal definition: An algorithm \mathcal{A} computes a function $f: \Sigma^* \to \Sigma^*$ if for all $w \in \Sigma^*$ the algorithm \mathcal{A} on input w terminates in a finite number of steps and outputs f(w).

Examples of functions:

- Numerical functions: length, addition, multiplication, division etc
- Given graph G and s, t find shortest paths from s to t
- Given program M check if M halts on empty input
- Posts Correspondence problem

Definition 1.5.

A function **f** over Σ^* is a boolean if $f: \Sigma^* \to \{0,1\}$.

Observation: There is a bijection between boolean functions and languages.

- ▶ Given boolean function $f: \Sigma^* \to \{0,1\}$ define language $\mathsf{L}_f = \{\mathsf{w} \in \Sigma^* \mid \mathsf{f}(\mathsf{w}) = 1\}$
- ▶ Given language $L \subseteq \Sigma^*$ define boolean function $f : \Sigma^* \to \{0,1\}$ as follows: f(w) = 1 if $w \in L$ and f(w) = 0 otherwise.

Definition 1.5.

A function **f** over Σ^* is a boolean if $f: \Sigma^* \to \{0,1\}$.

Observation: There is a bijection between boolean functions and languages.

- ▶ Given boolean function $f: \Sigma^* \to \{0,1\}$ define language $\mathsf{L}_\mathsf{f} = \{\mathsf{w} \in \Sigma^* \mid \mathsf{f}(\mathsf{w}) = 1\}$
- ▶ Given language $L \subseteq \Sigma^*$ define boolean function $f : \Sigma^* \to \{0,1\}$ as follows: f(w) = 1 if $w \in L$ and f(w) = 0 otherwise.

Definition 1.5.

A function **f** over Σ^* is a boolean if $f: \Sigma^* \to \{0,1\}$.

Observation: There is a bijection between boolean functions and languages.

- Given boolean function $f: Σ^* → \{0,1\}$ define language $L_f = \{w ∈ Σ^* \mid f(w) = 1\}$
- ▶ Given language $L \subseteq \Sigma^*$ define boolean function $f : \Sigma^* \to \{0,1\}$ as follows: f(w) = 1 if $w \in L$ and f(w) = 0 otherwise.

Language recognition problem

Definition 1.6.

For a language $L \subseteq \Sigma^*$ the language recognition problem associate with L is the following: given $w \in \Sigma^*$, is $w \in L$?

- ightharpoonup Equivalent to the problem of "computing" the function f_L .
- Language recognition is same as boolean function computation
- \blacktriangleright How difficult is a function **f** to compute? How difficult is the recognizing L_f ?

Why two different views? Helpful in understanding different aspects?

Language recognition problem

Definition 1.6.

For a language $L \subseteq \Sigma^*$ the language recognition problem associate with L is the following: given $w \in \Sigma^*$, is $w \in L$?

- \triangleright Equivalent to the problem of "computing" the function f_L .
- Language recognition is same as boolean function computation
- \blacktriangleright How difficult is a function **f** to compute? How difficult is the recognizing L_f ?

Why two different views? Helpful in understanding different aspects?

Language recognition problem

Definition 1.6.

For a language $L \subseteq \Sigma^*$ the language recognition problem associate with L is the following: given $w \in \Sigma^*$, is $w \in L$?

- \blacktriangleright Equivalent to the problem of "computing" the function f_L .
- Language recognition is same as boolean function computation
- \blacktriangleright How difficult is a function **f** to compute? How difficult is the recognizing L_f ?

Why two different views? Helpful in understanding different aspects?

How many languages are there?

The answer my friend is blowing in the slides.

Recall:

Definition 1.7.

An set X is countable if there is a bijection f between the natural numbers and A.

Theorem 1.8.

 Σ^* is countable for every finite Σ .

The set of all languages is $\mathbb{P}(\Sigma^*)$ the power set of Σ^*

 $\mathbb{P}(\mathbf{\Sigma}^*)$ is **not** countable for any finite $\mathbf{\Sigma}$.

How many languages are there?

The answer my friend is blowing in the slides.

Recall:

Definition 1.7.

An set X is countable if there is a bijection f between the natural numbers and A.

Theorem 1.8.

 Σ^* is countable for every finite Σ .

The set of all languages is $\mathbb{P}(\Sigma^*)$ the power set of Σ^*

Theorem 1.9 (Cantor).

 $\mathbb{P}(\Sigma^*)$ is **not** countable for any finite Σ .

Cantor's diagonalization argument

Theorem 1.10 (Cantor).

 $\mathbb{P}(\mathbb{N})$ is not countable.

- ▶ Suppose $\mathbb{P}(\mathbb{N})$ is countable infinite. Let S_1, S_2, \ldots , be an enumeration of all subsets of numbers.
- ▶ Let **D** be the following diagonal subset of numbers.

$$D = \{i \mid i \not\in S_i\}$$

- ▶ Since **D** is a set of numbers, by assumption, $D = S_j$ for some **j**.
- **Question:** Is $j \in D$?

Consequences for Computation

- ▶ How many C programs are there? The set of C programs is countable since each of them can be represented as a string over a finite alphabet.
- ► How many languages are there? Uncountably many!
- ► Hence some (in fact almost all!) languages/boolean functions do not have any C program to recognize them.

Questions:

- ▶ Maybe interesting languages/functions have C programs and hence computable. Only uninteresting languors uncomputable?
- ▶ Why should **C** programs be the definition of computability?
- ▶ Ok, there are difficult problems/languages. what languages are computable and which have efficient algorithms?

Consequences for Computation

- ▶ How many **C** programs are there? The set of **C** programs is countable since each of them can be represented as a string over a finite alphabet.
- ► How many languages are there? Uncountably many!
- Hence some (in fact almost all!) languages/boolean functions do not have any C program to recognize them.

Questions:

- ▶ Maybe interesting languages/functions have C programs and hence computable. Only uninteresting languors uncomputable?
- ▶ Why should **C** programs be the definition of computability?
- ▶ Ok, there are difficult problems/languages. what languages are computable and which have efficient algorithms?

Easy languages

Definition 1.11.

A language $L \subseteq \Sigma^*$ is finite if |L| = n for some integer n.

Exercise: Prove the following.

Theorem 1.12.

The set of all finite languages is countable.

Intro. Algorithms & Models of Computation

CS/ECE 374A, Fall 2022

1.5

Overview of whats coming on finite automata/complexity

1. Finite languages.

- 2. Regular languages.
 - 2.1 Regular expressions.
 - 2.2 DFA: Deterministic finite automata
 - 2.3 NFA: Non-deterministic finite automata
 - 2.4 Languages that are not regular.
- 3. Context free languages (stack).
- 4. Turing machines: Decidable languages.
- 5. TM Undecidable languages (halting theorem)
- 6. TM Unrecognizable languages.

- 1. Finite languages.
- 2. Regular languages.
 - 2.1 Regular expressions.
 - 2.2 DFA: Deterministic finite automata
 - 2.3 NFA: Non-deterministic finite automata
 - 2.4 Languages that are not regular.
- 3. Context free languages (stack).
- 4. Turing machines: Decidable languages.
- 5. TM Undecidable languages (halting theorem)
- 6. TM Unrecognizable languages.

- 1. Finite languages.
- 2. Regular languages.
 - 2.1 Regular expressions.
 - 2.2 DFA: Deterministic finite automata
 - 2.3 NFA: Non-deterministic finite automata
 - 2.4 Languages that are not regular.
- 3. Context free languages (stack).
- 4. Turing machines: Decidable languages.
- 5. TM Undecidable languages (halting theorem).
- 6. TM Unrecognizable languages.

- 1. Finite languages.
- 2. Regular languages.
 - 2.1 Regular expressions.
 - 2.2 DFA: Deterministic finite automata.
 - 2.3 NFA: Non-deterministic finite automata
 - 2.4 Languages that are not regular.
- 3. Context free languages (stack).
- 4. Turing machines: Decidable languages.
- 5. TM Undecidable languages (halting theorem)
- 6. TM Unrecognizable languages.

- 1. Finite languages.
- 2. Regular languages.
 - 2.1 Regular expressions.
 - 2.2 DFA: Deterministic finite automata.
 - 2.3 NFA: Non-deterministic finite automata.
 - 2.4 Languages that are not regular.
- 3. Context free languages (stack).
- 4. Turing machines: Decidable languages.
- 5. TM Undecidable languages (halting theorem)
- 6. TM Unrecognizable languages.

- 1. Finite languages.
- 2. Regular languages.
 - 2.1 Regular expressions.
 - 2.2 DFA: Deterministic finite automata.
 - 2.3 NFA: Non-deterministic finite automata.
 - 2.4 Languages that are not regular.
- 3. Context free languages (stack).
- 4. Turing machines: Decidable languages.
- 5. TM Undecidable languages (halting theorem)
- 6. TM Unrecognizable languages.

- 1. Finite languages.
- 2. Regular languages.
 - 2.1 Regular expressions.
 - 2.2 DFA: Deterministic finite automata.
 - 2.3 NFA: Non-deterministic finite automata.
 - 2.4 Languages that are not regular.
- 3. Context free languages (stack).
- 4. Turing machines: Decidable languages.
- 5. TM Undecidable languages (halting theorem).
- 6. TM Unrecognizable languages.

- 1. Finite languages.
- 2. Regular languages.
 - 2.1 Regular expressions.
 - 2.2 DFA: Deterministic finite automata.
 - 2.3 NFA: Non-deterministic finite automata.
 - 2.4 Languages that are not regular.
- 3. Context free languages (stack).
- 4. Turing machines: Decidable languages.
- 5. TM Undecidable languages (halting theorem)
- 6. TM Unrecognizable languages.

- 1. Finite languages.
- 2. Regular languages.
 - 2.1 Regular expressions.
 - 2.2 DFA: Deterministic finite automata.
 - 2.3 NFA: Non-deterministic finite automata.
 - 2.4 Languages that are not regular.
- 3. Context free languages (stack).
- 4. Turing machines: Decidable languages.
- 5. TM Undecidable languages (halting theorem).
- 6. TM Unrecognizable languages.

- 1. Finite languages.
- 2. Regular languages.
 - 2.1 Regular expressions.
 - 2.2 DFA: Deterministic finite automata.
 - 2.3 NFA: Non-deterministic finite automata.
 - 2.4 Languages that are not regular.
- 3. Context free languages (stack).
- 4. Turing machines: Decidable languages.
- 5. TM Undecidable languages (halting theorem).
- 6. TM Unrecognizable languages.