CS/ECE 374 A Homework 9 (due November 2) Fall 2021

CS/ECE 374 A () Fall 2021
~a+ Homework 9 +g=

Due Tuesday, November 2, 2021 at 8pm Central Time

This is the last homework before Midterm 2.

1. Morty needs to retrieve a stabilized plumbus from the Clackspire Labyrinth. He must
enter the labyrinth using Rick’s interdimensional portal gun, traverse the Labyrinth to a
plumbus, then take that plumbus through the Labyrinth to a fleeb to be stabilized, and
finally take the stabilized plumbus back to the original portal to return home. Plumbuses
are stabilized by fleeb juice, which any fleeb will release immediately after being removed
from its fleebhole. An unstabilized plumbus will explode if it is carried more than 137 flinks
from its original storage unit. The Clackspire Labyrinth smells like farts, so Morty wants to
spend as little time there as possible.

Rick has given Morty a detailed map of the Clackspire Labyrinth, which consist of a
directed graph G = (V, E) with non-negative edge weights (indicating distance in flinks),
along with two disjoint subsets P C V and F C V, indicating the plumbus storage units
and fleebholes, respectively. Morty needs to identify a start vertex s, a plumbus storage
unit p € P, and a fleebhole f € F, such that the shortest-path distance from p to f is at
most 137 flinks long, and the length of the shortest walk s~»p~» f ~wss is as short as possible.

Describe and analyze an algo(burp)rithm to so(burp)olve Morty’s problem. You can
assume that it is in fact possible for Morty to succeed. As usual, do not assume that edge
weights are integers.

2. You are planning a hiking trip in Jasper National Park in British Columbia over winter break.
You have a complete map of the park’s trails, which indicates that hikers on certain trails
have a higher chance of encountering a sasquatch. All visitors to the park are required to
purchase a canister of sasquatch repellent. You can safely traverse a high-risk trail segment
only by completely using up a full canister of sasquatch repellent. The park rangers have
helpfully installed several refilling stations around the park, where you can refill empty
canisters at no cost. The canisters themselves are expensive and heavy, so you can only
carry one. The trails are narrow, so each trail segment allows traffic in only one direction.

You have converted the trail map into a directed graph G = (V, E), whose vertices
represent trail intersections, and whose edges represent trail segments. A subset R CV of
the vertices indicate the locations of the Repellent Refilling stations, and a subset H C E
of the edges are marked as High-risk. Each edge e is labeled with the length {(e) of the
corresponding trail segment. Your campsite appears on the map as a particular vertex
s € V, and the visitor center is another vertex t € V.

(@) Describe and analyze an algorithm that finds the shortest safe hike from your campsite s
to the visitor center t. Assume there is a refill station at your campsite, and another
refill station at the visitor center.

(b) Describe and analyze an algorithm to decide if you can safely hike from any refill
station any other refill station. In other words, for every pair of vertices u and v in R, is
there a safe hike from u to v?

CS/ECE 374 A Homework 9 (due November 2) Fall 2021

Solved Problem

3. Although we typically speak of “the” shortest path from one vertex to another, a single
graph could contain several minimum-length paths with the same endpoints.

ﬂﬁ%AEﬁﬁ FAA Wﬁ
AR | AR ‘f“*?“ s
20 SNV T BN VA G BN Y SN

Four (of many) equal-length shortest paths.

Describe and analyze an algorithm to compute the number of shortest paths from a source
vertex s to a target vertex t in an arbitrary directed graph G with weighted edges. Assume
that all edge weights are positive and that any necessary arithmetic operations can be
performed in O(1) time each.

[Hint: Compute shortest path distances from s to every other vertex. Throw away all
edges that cannot be part of a shortest path from s to another vertex. What’s left?]

Solution: We start by computing shortest-path distances dist(v) from s to v, for every
vertex v, using Dijkstra’s algorithm. Call an edge u—v tight if dist(u) + w(u—v) =
dist(v). Every edge in a shortest path from s to t must be tight. Conversely, every
path from s to t that uses only tight edges has total length dist(t) and is therefore a
shortest path!

Let H be the subgraph of all tight edges in G. We can easily construct H in O(V +E)
time. Because all edge weights are positive, H is a directed acyclic graph. It remains
only to count the number of paths from s to t in H.

For any vertex v, let NumPaths(v) denote the number of paths in H from v to t; we
need to compute NumPaths(s). This function satisfies the following simple recurrence:

1 ifv=t

NumPaths(v) = ZNumPathS(W) otherwise

vV—ow

In particular, if v is a sink but v # t (and thus there are no paths from v to t), this
recurrence correctly gives us NumPaths(v) = Z @=0.

We can memoize this function into the graph itself, storing each value NumPaths(v)
at the corresponding vertex v. Since each subproblem depends only on its successors
in H, we can compute NumPaths(v) for all vertices v by considering the vertices in
reverse topological order, or equivalently, by performing a depth-first search of H
starting at s. The resulting algorithm runs in O(V + E) time.

The overall running time of the algorithm is dominated by Dijkstra’s algorithm in
the preprocessing phase, which runs in O(E log V) time. [|

CS/ECE 374 A Homework 9 (due November 2) Fall 2021

Rubric: 10 points =5 points for reduction to counting paths in a dag (standard graph reduction
rubric) + 5 points for the path-counting algorithm (standard dynamic programming rubric)

