CS/ECE 374 A ♦ Fall 2021 Fake Midterm 1 Problem 1 Name: Dakshita For each statement below, check "Yes" if the statement is *ALWAYS* true and "No" otherwise, and give a *brief* explanation of your answer. (a) Every integer in the empty set is prime. (b) The language $\{0^m 1^n \mid m+n \le 3/4\}$ is regular. (c) The language $\{0^m 1^n \mid m-n \le 374\}$ is regular. (d) For all languages L, the language L^* is regular. (e) For all languages L, the language L^* is infinite. (f) For all languages $L \subset \Sigma^*$, if L can be represented by a regular expression, then $\Sigma^* \setminus L$ is recognized by a DFA. if L is regular if L is regular No Flip accepting and rejecting states in DFA for L. (g) For all languages L and L', if $L \cap L' = \emptyset$ and L' is not regular, then L is regular. (h) Every regular language is recognized by a DFA with exactly one accepting state. (i) Every regular language is recognized by an NFA with exactly one accepting state. (j) Every language is either regular or context-free. | CS/ECE 374 A & Fall 2021 | Name: | |--------------------------|-------| | Fake Midterm 1 Problem 2 | | For each of the following languages over the alphabet $\Sigma = \{0, 1\}$, either *prove* that the language is regular or prove that the language is not regular. Exactly one of these two languages is regular. Both of these languages contain the string 00110100000110100. 1. $$\{0^n w 0^n \mid w \in \Sigma^+ \text{ and } n > 0\}$$ 0(0+1)0 Let z e {o wo lwest, n>o}. Then 2 = 0....0 w 0....0, = 0,000.w .000, 0 E 0 (0+1) 0 Let 2 € 0(0+1) 0 Then Z= D'w o' where WEE+ E {O"wO" | WEE+, N>O} 2. $\{w \circ^n w \mid w \in \Sigma^+ \text{ and } n > 0\}$ 000,101,12012,13013,19014. F={1ⁿ0:n>0}. Let x,y be ANY strings in F. $x=1^{i}0$, $y=1^{j}0$, $i\neq j$, i,j>0. x = 1'01', y = 1'01' $w_1 = 1'$ $w_2 = 1'01'$ $w_1 = 1'$ $w_2 = 1'$ $w_1 = 1'$ $w_2 = 1'$ F is infinite fooling set. So, L is not regular. | CS/ECE 374 A ♦ Fall 2021 | Name: | |--------------------------|-------| | Fake Midterm 1 Problem 3 | | The parity of a bit-string w is 0 if w has an even number of 1s, and 1 if w has an odd number of 1s. For example: $$parity(\varepsilon) = 0$$ $parity(0010100) = 0$ $parity(00101110100) = 1$ (a) Give a self-contained, formal, recursive definition of the parity function. (In particular, do not refer to # or other functions defined in class.) parity (w) = $$SO$$ if $w=\varepsilon$ parity(x) if $w=0.x$ (10) parity(x) if $w=1.x$ (b) Let *L* be an arbitrary regular language. Prove that the language $OddParity(L) := \{w \in L \mid parity \}$ Product construction of M and M', strings in L that have odd number of Is. M=(\(\xi_1, \xi_1, \xi_2, \xi_3, \xi_5\) is the DFA for L, (exists because L is regular) M'=(\(\xi_1', \xi_2', \xi_3', \xi_3', \xi_5')\) is the DFA that on input w computes parity (w). Accepting states = { (a,a') s.t. (in product) aEA, a'EA'} (c) Let L be an arbitrary regular language. Prove that the language $AddParity(L) := \{parity(w) \cdot w \mid w \in L\}$ is also regular. Odd Parity (L) is regular. Similarly EvenParity (L) is regular. [Change M' to flip acc, reject states] > Swell parity (w) = 03 Add Parity (L) = O. Evenparity (L) + 1. Odd Parity (L) [Hint: Yes, you have enough room.] | CS/ECE 374 A & Fall 2021 | Name: | |--------------------------|-------| | Fake Midterm 1 Problem 4 | | For each of the following languages L, give a regular expression that represents L and describe a DFA that recognizes L. You do **not** need to prove that your answers are correct. (a) All strings in $(0 + 1)^*$ that do not contain the substring 0110. (b) All strings in 0*10* whose length is a multiple of 3. (2,8,5,4,6) (2,8,5,4,6) (3,8,5,4,6) (4,8,5,4,6) (5,8,5,4,6) (6,8,5,4,6) (7) (8,8,5,4,6) (8,8,5,4,6) (9) (10) (Product construction with Acc states. AXA'. (000)*010(000)* + (000)*001(000)* + (000)*001(000)* | CS/ECE 374 A ♦ Fall 2021 | Name: | |--------------------------|-------| | Fake Midterm 1 Problem 5 | | For any string $w \in \{0,1\}^*$, let obliviate(w) denote the string obtained from w by removing every 1. For example: $$obliviate(\varepsilon) = \varepsilon$$ $$obliviate(000000) = 0000000$$ $$obliviate(111111) = \varepsilon$$ $$obliviate(010001101) = 000000$$ Let L be an arbitrary regular language. 1. Prove that the language Obliviate(L) = {obliviate(w) | w \in L} is regular. $x \in OBL(L) \text{ iff } x = obliviate(w), w \in L.$ w = 010011 x = 000 x = 00011 000011 00001 notes. [$\Omega \in UNOBL(L)$ iff $OBLIVIATE(W) \in L$. M' gets $W \to first OBLIVIATE(W)$, $\longrightarrow run Monthe remains string of 0's. Let <math>M$ be a DFA for L, $M = (\Sigma, 0, S, A, S)$ M' is NFA for DBLV(L), $M' = (\Sigma, 0', S', A', S')$ B' = Q S'(Q, 0) = S(Q, 0) thanging S' = S A' = A S'(Q, 1) = Q S'(Q, 1) = Q S'(Q, 1) = Q