

Case 2:
$$w = a \cdot x$$
 for some symbol a string x.
 $(w \cdot y) \cdot z = (a \cdot x) \cdot y \cdot z \quad [w = a \cdot x]$

$$= (a \cdot (x \cdot y)) \cdot z \quad [def \cdot]$$

= a.(x.(8.2)) [pg 1H]
$= a \cdot x \cdot (y \cdot z) \left[dy \cdot z \right]$
2 $W \cdot (y \cdot z)$ $[w = a \cdot x]$
In both cases, (w·y)·z = w·(y·z)
LANGUAGES
language: set of strings over an alphabet eg, $\Sigma = \{0,1\}$
Examples of languages
EMPTY SET (no strings) Ses -> set containing the empty string
3 e 3 -> set containing the string string
€*: All strings over €
All strings formed by
5 All strings of length 5 formed
Kleene Concatenating Symbols from

Z = ZA, B, C Z3 Exyz3 is a language L = A = 2 * \ A L- All python programs L = A . B = & x.y | XEA, yEB; {OVER, UNDER} . ZEAT, PAY} 203° · 213° {E } φ.L = Φ L* = Ze3ULULOL WEL* (=) W= E OR W= X.y where xEL, yEL Is L* always infinite ? What is L* when L= What about $L = \{ \{ \{ \} \} \} = \{ \{ \{ \} \} \} = \{ \{ \{ \} \} \} = \{ \{ \} \} \} = \{ \{ \} \} = \{ \{ \} \} = \{ \{ \} \} = \{ \} \} = \{ \} = \{ \{ \} \} = \{ \} = \{ \{ \}$

Ü

L+ = L V L. L V L. L. L.

Lemma 2.1. The following identities hold for all languages A, B, and C:

- (a) $A \cup B = B \cup A$.
- (b) $(A \cup B) \cup C = A \cup (B \cup C)$.
- (c) $\emptyset \bullet A = A \bullet \emptyset = \emptyset$.
- (d) $\{\varepsilon\} \cdot A = A \cdot \{\varepsilon\} = A$.
- (e) $(A \cdot B) \cdot C = A \cdot (B \cdot C)$.
- (f) $A \bullet (B \cup C) = (A \bullet B) \cup (A \bullet C)$.
- (g) $(A \cup B) \cdot C = (A \cdot C) \cup (B \cdot C)$.

Lemma 2.2. The following identities hold for every language L:

- (a) $L^* = \{\varepsilon\} \cup L^+ = L^* \cdot L^* = (L \cup \{\varepsilon\})^* = (L \setminus \{\varepsilon\})^* = \{\varepsilon\} \cup L \cup (L^+ \cdot L^+).$
- (b) $L^+ = L \cdot L^* = L^* \cdot L = L^+ \cdot L^* = L^* \cdot L^+ = L \cup (L^+ \cdot L^+).$
- (c) $L^+ = L^*$ if and only if $\varepsilon \in L$.

Lemma 2.3 (Arden's Rule). For any languages A, B, and L such that $L = A \cdot L \cup B$, we have $A^* \cdot B \subseteq L$. Moreover, if A does not contain the empty string, then $L = A \cdot L \cup B$ if and only if $L = A^* \cdot B$.

REGULAR LANGUAGES

L is regular means

wither $* L = \Phi$

or * L = {w} & for some string w

il-then-else or * L = AUB for regular A, E

sequence of lines & L = A . B for regular A, I

loop x L = A for regular A

REGULAR EXPRESSIONS

 $0 + 10^{*}$ $= \{0\} \lor \{1\} \cdot \{0\}^{*}$ $0 = 0 \lor 1 \cdot \epsilon$ $0 \lor 1 \cdot 0$ $0 \lor 1 \cdot 0$

 $\frac{2}{5}$ 0, 1, 10, 100, $\frac{3}{5}$

Eg: The language of alternating Os and Is strings in language

strings not in language

Regular Expression: (E+1) 2013 (E+0)

A regular expression tree for 0*0 + 0*1(10*1 + 01*0)*10*

THM: Every regular expression is perfectly

Proof: Let *R* be an arbitrary regular expression.

ssume that **every regular expression smaller than** *R* is perfectly cromulent. There are five cases to consider.

• Suppose $R = \emptyset$.

Therefore, R is perfectly cromulent.

Suppose R is a single string.

Therefore, R is perfectly cromulent.

Suppose R = S + T for some regular expressions S and T.

The induction hypothesis implies that S and T are perfectly cromulent.

Therefore, R is perfectly cromulent.

• Suppose $R = S \cdot T$ for some regular expressions S and T.

The induction hypothesis implies that *S* and *T* are perfectly cromulent.

Therefore, R is perfectly cromulent.

• Suppose $R = S^*$ for some regular expression. S.

The induction hypothesis implies that *S* is perfectly cromulent.

Therefore, R is perfectly cromulent.

In all cases, we conclude that w is perfectly cromulent.