And, for the hous is crinkled to and fro,
And hath so queinte weyes for to go—

For hit is shapen as the mase is wroght—
Therto have | a remedie in my thoght,

That, by a clewe of twyne, as he hath goon,
The same wey he may returne anoon,
Folwing alwey the threed, as he hath come.

— Geoffrey Chaucer, The Legend of Good Women (c. 1385)

“Com’é bello il mondo e come sono brutti i labirinti!” dissi sollevato.

“Come sarebbe bello il mondo se ci fosse una regola per girare nei labirinti,”
rispose il mio maestro.

["How beautiful the world is, and how ugly labyrinths are,” | said, relieved.

“How beautiful the world would be if there were a procedure for moving through
labyrinths,” my master replied.]

— Umberto Eco, Il nome della rosa (1980)
English translation (The Name of the Rose) by William Weaver (1983)

Depth-First Search

In the previous chapter, we considered a generic algorithm—whatever-first
search—for traversing arbitrary graphs, both undirected and directed. In this
chapter, we focus on a particular instantiation of this algorithm called depth-first
search, and primarily on the behavior of this algorithm in directed graphs.
Although depth-first search can be accurately described as “whatever-first

search with a stack”, the algorithm is normally implemented recursively, rather
than using an explicit stack:

DFS(v):

if v is unmarked
mark v
for each edge v—w
DFS(w)

225

6. DEPTH-FIRST SEARCH

226

We can make this algorithm slightly faster (in practice) by checking whether
a node is marked before we recursively explore it. This modification ensures
that we call DFS(v) only once for each vertex v. We can further modify the
algorithm to compute other useful information about the vertices and edges,
by introducing two black-box subroutines, PREVisIT and PosTVisiT, which we
leave unspecified for now.

DFS(v):

mark v
PrREVISIT(V)
for each edge vw
if w is unmarked
parent(w) « v
DFS(w)
PosTVisiT(v)

Recall that a node w is reachable from another node v in a directed graph G—
or more simply, v can reach w—if and only if G contains a directed path from v
to w. Let reach(v) denote the set of vertices reachable from v (including v
itself). If we unmark all vertices in G, and then call DFS(v), the set of marked
vertices is precisely reach(v).

Reachability in undirected graphs is symmetric: v can reach w if and only
if w can reach v. As a result, after unmarking all vertices of an undirected
graph G, calling DFS(v) traverses the entire component of v, and the parent
pointers define a spanning tree of that component.

The situation is more subtle with directed graphs, as shown in the figure
below. Even though the graph is “connected”, different vertices can reach
different, and potentially overlapping, portions of the graph. The parent
pointers assigned by DFS(v) define a tree rooted at v whose vertices are
precisely reach(v), but this is not necessarily a spanning tree of the graph.

Figure 6.1. Depth-first trees rooted at different vertices in the same directed graph.

As usual, we can extend our reachability algorithm to traverse the entire
input graph, even if it is disconnected, using the standard wrapper function
shown on the left in Figure 6.2. Here we add a generic black-box subroutine

6.1. Preorder and Postorder

PREPROCESS to perform any necessary preprocessing for the PREVISIT and
PosTVisiT functions.

DFSALL(G): DFSALL(G):
PREPROCESS(G) PREPROCESS(G)
for all vertices v add vertex s

unmark v for all vertices v
for all vertices v add edge s—v
if v is unmarked unmark v
DFS(v) DFS(s)

Figure 6.2. Two formulations of the standard wrapper algorithm for depth-first search

Alternatively, if we are allowed to modify the graph, we can add a new
source vertex s, with edges to every other vertex in G, and then make a single
call to DFS(s), as shown on the right of Figure 6.2. Now the resulting parent
pointers always define a spanning tree of the augmented input graph, but not of
the original input graph. Otherwise, the two wrapper functions have essentially
identical behavior; choosing one or the other is entirely a matter of convenience.’

Again, this algorithm behaves slightly differently for undirected and directed
graphs. In undirected graphs, as we saw in the previous chapter, it is easy to
adapt DFSALL to count the components of a graph; in particular, the parent
pointers computed by DFSALL define a spanning forest of the input graph,
containing a spanning tree for each component. When the graph is directed,
however, DFSALL may discover any number of “components” between 1 and V,
even when the graph is “connected”, depending on the precise structure of the
graph and the order in which the wrapper algorithm visits the vertices.

6.1 Preorder and Postorder

Hopefully you are already familiar with preorder and postorder traversals of
rooted trees, both of which can be computed using depth-first search. Similar
traversal orders can be defined for arbitrary directed graphs—even if they are
disconnected—by passing around a counter, as shown in Figure 6.3. Equiva-
lently, we can use our generic depth-first-search algorithm with the following
subroutines PREPROCESS, PREVISIT, and POSTVISIT.

PREVISIT(V): PosTVIsiT(v):
PREPROCESS(G):
clock « clock + 1 clock « clock + 1
clock < 0
v.pre « clock v.post « clock

'The equivalence of these two wrapper functions is a specific feature of depth-first search.
In particular, wrapping breadth-first search in a for-loop to visit every vertex does not yield the
same traversal order as adding a source vertex and invoking breadth-first search at s.

227

6. DEPTH-FIRST SEARCH

228

DFS(v, clock):
DFSALL(G): mark v
clock < 0 clock < clock + 1; v.pre « clock
for all vertices v for each edge v—w
unmark v if w is unmarked
for all vertices v w.parent « v
if v is unmarked clock < DFS(w, clock)
clock < DFS(v, clock) clock « clock + 1; v.post « clock
return clock

Figure 6.3. Defining preorder and postorder via depth-first search.

In either formulation, this algorithm assigns assigns v.pre (and advances the
clock) just after pushing v onto the recursion stack, and it assigns v.post (and
advances the clock) just before popping v off the recursion stack. It follows that
for any two vertices u and v, the intervals [u.pre, u.post] and [v.pre, v.post] are
either disjoint or nested. Moreover, [u.pre,u.post] contains [v.pre, v.post] if and
only if DFS(v) is called during the execution of DFS(u), or equivalently, if and
only if u is an ancestor of v in the final forest of parent pointers.

After DFSALL labels every node in the graph, the labels v.pre define a
preordering of the vertices, and the labels v.post define a postordering of the
vertices.” With a few trivial exceptions, every graph has several different pre-
and postorderings, depending on the order that DFS considers edges leaving
each vertex, and the order that DFSALL considers vertices.

For the rest of this chapter, we refer to v.pre as the starting time of v (or
less formally, “when v starts”), v.post as the finishing time of v (or less formally,
“when v finishes”), and the interval between the starting and finishing times as
the active interval of v (or less formally, “while v is active”).

Classifying Vertices and Edges

During the execution of DFSALL, each vertex v of the input graph has one of
three states:
* new if DFS(v) has not been called, that is, if clock < v.pre;

* active if DFS(v) has been called but has not returned, that is, if v.pre <
clock < v.post;

* finished if DFS(v) has returned, that is, if v.post < clock.
Because starting and finishing times correspond to pushes and pops on the

recursion stack, a vertex is active if and only if it is on the recursion stack. It
follows that the active nodes always comprise a directed path in G.

*Confusingly, both of these orders are sometimes called “depth-first ordering”. Please don’t
do that.

6.1. Preorder and Postorder

a e

b i

f n

g J

:

h

[4] 1

:
) .
- 1234567 9 'IO‘I“I 1‘2131415161718192021 22232425262728293031 327

Figure 6.4. A depth-first forest of a directed graph, and the corresponding active intervals of its vertices,
defining the preordering abfgchdlokpeinjm and the postordering dkoplhcgfbamjnie. Forest edges are
solid; dashed edges are explained in Figure 6.5.

The edges of the input graph fall into four different classes, depending on
how their active intervals intersect. Fix your favorite edge u—v.

* If v is new when DFS(u) begins, then DFS(v) must be called during the
execution of DFS(u), either directly or through some intermediate recursive
calls. In either case, u is a proper ancestor of v in the depth-first forest, and
u.pre < v.pre < v.post < u.post.

— If DFS(u) calls DFS(v) directly, then u = v.parent and u—v is called a
tree edge.

— Otherwise, u—v is called a forward edge.

* If v is active when DFS(u) begins, then v is already on the recursion stack,
which implies the opposite nesting order v.pre < u.pre < u.post < v.post.
Moreover, G must contain a directed path from v to u. Edges satisfying this
condition are called back edges.

 If v is finished when DFS(u) begins, we immediately have v.post < u.pre.

Edges satisfying this condition are called cross edges.

* Finally, the fourth ordering u.post < v.pre is impossible.

These edge classes are illustrated in Figure 6.5. Again, the actual classification
of edges depends on the order in which DFSALL considers vertices and the order
in which DFS considers the edges leaving each vertex.

229

6. DEPTH-FIRST SEARCH

230

2345678910

Figure 6.5. Classification of edges by depth-first search.

Finally, the following key lemma characterizes ancestors and descendants in
any depth-first forest according to vertex states during the traversal.

Lemma 6.1. Fix an arbitrary depth-first traversal of any directed graph G. The
following statements are equivalent for all vertices u and v of G.

(a) u is an ancestor of v in the depth-first forest.

(b) u.pre < v.pre < v.post < u.post.

(c) Just after DFS(v) is called, u is active.

(d) Just before DFS(u) is called, there is a path from u to v in which every
vertex (including u and v) is new.

Proof: First, suppose u is an ancestor of v in the depth-first forest. Then by
definition there is a path P of tree edges u to v. By induction on the path
length, we have u.pre < w.pre < w.post < u.post for every vertex w in P, and
thus every vertex in P is new before DFS(u) is called. In particular, we have
u.pre < v.pre < v.post < u.post, which implies that u is active while DFS(v) is
executing.

Because parent pointers correspond to recursive calls, u.pre < v.pre <
v.post < u.post implies that u is an ancestor of v.

Suppose u is active just after DFS(v) is called. Then u.pre < v.pre < v.post <
u.post, which implies that there is a path of (zero or more) tree edges from u,
through the intermediate nodes on the recursion stack (if any), to v.

Finally, suppose u is not an ancestor of v. Fix an arbitrary path P from u
to v, let x be the first vertex in P that is not a descendant of u, and let w be
the predecessor of x in P. The edge w—x guarantees that x.pre < w.post, and
w.post < u.post because w is a descendant of u, so x.pre < u.post. It follows that
x.pre < u.pre, because otherwise x would be a descendant of u. Because active
intervals are properly nested, there are only two possibilities:

* If u.post < x.post, then x is active when DFS(u) is called.
* If x.post < u.pre, then x is already finished when DFS(u) is called.

6.2. Detecting Cycles

We conclude that every path from u to v contains a vertex that is not new when
DFS(u) is called. O

6.2 Detecting Cycles

A directed acyclic graph or dag is a directed graph with no directed cycles.
Any vertex in a dag that has no incoming vertices is called a source; any vertex
with no outgoing edges is called a sink. An isolated vertex with no incident
edges at all is both a source and a sink. Every dag has at least one source and
one sink, but may have more than one of each. For example, in the graph with
n vertices but no edges, every vertex is a source and every vertex is a sink.

Figure 6.6. A directed acyclic graph. Vertices e, f, and j are sources; vertices b, ¢, and p are sinks.

Recall from our earlier case analysis that if u.post < v.post for any edge u—v,
the graph contains a directed path from v to u, and therefore contains a directed
cycle through the edge u—v. Thus, we can determine whether a given directed
graph G is a dag in O(V + E) time by computing a postordering of the vertices
and then checking each edge by brute force.

Alternatively, instead of numbering the vertices, we can explicitly maintain
the status of each vertex and immediately return FALSE if we ever discover
an edge to an active vertex. This algorithm also runs in O(V + E) time; see
Figure 6.7.

IsAcycLICDFS(v):
IsAcycLic(G): v.status < ACTIVE

for all vertices v

for each edge v—w
v.status < NEw

if w.status = ACTIVE

for all vertices v return FALSE
if v.status = NEw else if w.status = NEw
if IsAcycLIcDFS(v) = FALSE if IsAcycLICDFS(w) = FALSE
return FALSE return FALSE
return TRUE v.status «<— FINISHED

return TRUE

Figure 6.7. A linear-time algorithm to determine if a graph is acyclic.

231

6. DEPTH-FIRST SEARCH

232

6.3 Topological Sort

A topological ordering of a directed graph G is a total order < on the vertices
such that u < v for every edge u—v. Less formally, a topological ordering
arranges the vertices along a horizontal line so that all edges point from left to
right. A topological ordering is clearly impossible if the graph G has a directed
cycle—the rightmost vertex of the cycle would have an edge pointing to the left!

On the other hand, consider an arbitrary postordering of an arbitrary
directed graph G. Our earlier analysis implies that u.post < v.post for any edge
u—v, then G contains a directed path from v to u, and therefore contains a
directed cycle through u—v. Equivalently, if G is acyclic, then u.post > v.post for
every edge u—v. It follows that every directed acyclic graph G has a topological
ordering; in particular, the reversal of any postordering of G is a topological
ordering of G.

[T}
[E]

v

9 10111213141516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Figure 6.8. Reversed postordering of the dag from Figure 6.6.

If we require the topological ordering in a separate data structure, we can
simply write the vertices into an array in reverse postorder, in O(V + E) time, as
shown in Figure 6.9.

Implicit Topological Sort

But recording the topological order into a separate data structure is usually
overkill. In most applications of topological sort, the ordered list of the vertices
is not our actual goal; rather, we want to perform some fixed computation at
each vertex of the graph, either in topological order or in reverse topological
order. For these applications, it is not necessary to record the topological order
at all!

6.3. Topological Sort

ToprSorTDFS(v, clock):
v.status < ACTIVE

ToPoLOGICALSORT(G):
for all vertices v
v.status < NEwW
clock <V
for all vertices v
if v.status = NEw
clock < TorSORTDFS(v, clock)

return S[1..V]

for each edge v—w
if w.status = NEw
clock < TopSORTDFS(v, clock)
else if w.status = ACTIVE
fail gracefully

v.status < FINISHED
S[clock] < v

clock < clock—1
return clock

Figure 6.9. Explicit topological sort

If we want to process a directed acyclic graph in reverse topological order,
it suffices to process each vertex at the end of its recursive depth-first search.
After all, topological order is the same as reversed postorder!

PosTPROCESSDFS(v):
v.status < ACTIVE

PosTPRrROCESS(G):
for all vertices v
v.status < NEw

for each edge v—w
if w.status = NEw

for all . PosTPROCESSDFS(w)
ora fve.r tices v Ked else if w.status = ACTIVE
th v 1s unmarke fail gracefully

PosTPROCESSDFS(Vv)
v.status < FINISHED

ProcEess(v)

If we already know that the input graph is acyclic, we can further simplify the
algorithm by simply marking vertices instead of recording their search status.

PosTPROCESSDAG(G): PosTPROCESSDAGDFS(v):
for all vertices v mark v
unmark v for each edge v—w
for all vertices v if w is unmarked
if v is unmarked PosTPROCESSDAGDFS(w)
PosTPROCESSDAGDFS(s) ProcEess(v)

This is just the standard depth-first search algorithm, with PosTVisiT renamed

to PROCESS!

Because it is such a common operation on directed acyclic graphs, I sometimes

express postorder processing of a dag idiomatically as follows:

PosTPrROCESSDAG(G):

for all vertices v in postorder
Process(v)

233

6. DEPTH-FIRST SEARCH

234

For example, our earlier explicit topological sort algorithm can be written as
follows:

ToPOLOGICALSORT(G):
clock <V
for all vertices v in postorder
S[clock] « v
clock < clock —1
return S[1..V]

To process a dag in forward topological order, we can record a topological
ordering of the vertices into an array and then run a simple for-loop. Alternatively,
we can apply depth-first search to the reversal of G, denoted rev(G), obtained
by replacing each each v—w with its reversal w—v. Reversing a directed cycle
gives us another directed cycle with the opposite orientation, so the reversal
of a dag is another dag. Every source in G is a sink in rev(G) and vice versa; it
follows inductively that every topological ordering of rev(G) is the reversal of a
topological ordering of G.3 The reversal of any directed graph (represented in a
standard adjacency list) can be computed in O(V + E) time; the details of this
construction are left as an easy exercise.

6.4 Memoization and Dynamic Programming

Our topological sort algorithm is arguably the model for a wide class of dynamic
programming algorithms. Recall that the dependency graph of a recurrence
has a vertex for every recursive subproblem and an edge from one subproblem
to another if evaluating the first subproblem requires a recursive evaluation
of the second. The dependency graph must be acyclic, or the naive recursive
algorithm would never halt.

Evaluating any recurrence with memoization is exactly the same as perform-
ing a depth-first search of the dependency graph. In particular, a vertex of the
dependency graph is “marked” if the value of the corresponding subproblem has
already been computed. The black-box subroutines PREVisiT and PosTVisIiT
are proxies for the actual value computation. See Figure 6.10.

Carrying this analogy further, evaluating a recurrence using dynamic pro-
gramming is the same as evaluating all subproblems in the dependency graph of
the recurrence in reverse topological order—every subproblem is considered
after the subproblems it depends on. Thus, every dynamic programming al-
gorithm is equivalent to a postorder traversal of the dependency graph of its
underlying recurrence!

3A postordering of the reversal of G is not necessarily the reversal of a postordering of G,
even though both are topological orderings of G.

6.4. Memoization and Dynamic Programming

MEMOIZE(X) : DES(v) :
if value[x] is undefined if v is unmarked
initialize value[x] mark v
PREVISIT(X)
for all subproblems y of x for all edges v—w
MEMO1ZE(Y) DFS(w)
update value[x] based on value[y]
finalize value[x] PosTVisiT(x)

Figure 6.10. Memoized recursion is depth-first search. Depth-first search is memoized recursion.

DYNAMICPROGRAMMING(G) :
for all subproblems x in postorder
initialize value[x]
for all subproblems y of x
update value[x] based on value[y]
finalize value[x]

Figure 6.11. Dynamic programming is postorder traversal.

However, there are some minor differences between most dynamic program-
ming algorithms and topological sort. First, in most dynamic programming
algorithms, the dependency graph is implicit—the nodes and edges are not
explicitly stored in memory, but rather are encoded by the underlying recur-
rence. But this difference really is minor; as long as we can enumerate recursive
subproblems in constant time each, we can traverse the dependency graph
exactly as if it were explicitly stored in an adjacency list.

More significantly, most dynamic programming recurrences have highly
structured dependency graphs. For example, as we discussed in Chapter 5,
the dependency graph for the edit distance recurrence is a regular grid with
diagonals, and the dependency graph for optimal binary search trees is an
upper triangular grid with all possible rightward and upward edges. This
regular structure allows us to hard-wire a suitable evaluation order directly into
the algorithm, typically as a collection of nested loops, so there is no need to
topologically sort the dependency graph at run time. We previously called the
reverse topological order an evaluation order.

Dynamic Programming in Dags

Conversely, we can use depth-first search to build dynamic programming
algorithms for problems with less structured dependency graphs. For example,
consider the longest path problem, which asks for the path of maximum total
weight from one node s to another node t in a directed graph G with weighted
edges. In general directed graphs, the longest path problem is NP-hard (by an
easy reduction from the traveling salesman problem; see Chapter 12), but it is

235

6. DEPTH-FIRST SEARCH

RRRRR

i

Figure 6.12. The dependency dag of the edit distance recurrence.

easy to if the input graph G is acyclic, we can compute the longest path in G in
linear time, as follows.

Fix the target vertex t, and for any node v, let LLP(v) denote the Length
of the Longest Path in G from v to t. If G is a dag, this function satisfies the
recurrence

ifv=t,

LLP(v) = {O

max {E(v—>w) + LLP(w) | y—w e E} otherwise,

where {(v—w) denotes the given weight (“length”) of edge v—w, and max@ =
—oo. In particular, if v is a sink but not equal to t, then LLP(v) = —0c0.

The dependency graph for this recurrence is the input graph G itself:
subproblem LLP(v) depends on subproblem LLP(w) if and only if v—w is an
edge in G. Thus, we can evaluate this recursive function in O(V + E) time by
performing a depth-first search of G, starting at s. The algorithm memoizes
each length LLP(v) into an extra field in the corresponding node v.

LONGESTPATH(V, t):

ifv=t
return O

if v.LLP is undefined
V.LLP <~ —00
for each edge v—w

v.LLP < max {v.LLP, £(v—w) + LoNGESTPATH(W, t)}

return v.LLP

In principle, we can transform this memoized recursive algorithm into a
dynamic programming algorithm via topological sort:

236

6.5. Strong Connectivity

LONGESTPATH(S, t):
for each node v in postorder

ifv=t
v.LLP <0

else
V.LLP < —00
for each edge v—w

v.LLP < max {v.LLP, L(v-w)+ W.LLP}

return s.LLP

These two algorithms are arguably identical—the recursion in the first algorithm
and the for-loop in the second algorithm represent the “same” depth-first
search! Choosing one of these formulations over the other is entirely a matter
of convenience.

Almost any dynamic programming problem that asks for an optimal sequence
of decisions can be recast as finding an optimal path in some associated dag. For
example, the text segmentation, subset sum, longest increasing subsequence,
and edit distance problems we considered in Chapters 2 and 3 can all be
reformulated as finding either a longest path or a shortest path in a dag, possibly
with weighted vertices or edges. In each case, the dag in question is the
dependency graph of the underlying recurrence. On the other hand, “tree-
shaped” dynamic programming problems, like finding optimal binary search
trees or maximum independent sets in trees, cannot be recast as finding an
optimal path in a dag.

6.5 Strong Connectivity

Let’s go back to the proper definition of connectivity in directed graphs. Recall
that one vertex u can reach another vertex v in a directed graph G if G contains
a directed path from u to v, and that reach(u) denotes the set of all vertices
that u can reach. Two vertices u and v are strongly connected if u can reach v
and v can reach u. A directed graph is strongly connected if and only if every
pair of vertices is strongly connected.

Tedious definition-chasing implies that strong connectivity is an equivalence
relation over the set of vertices of any directed graph, just like connectivity in
undirected graphs. The equivalence classes of this relation are called the strongly
connected components—or more simply, the strong components—of G. Equiv-
alently, a strong component of G is a maximal strongly connected subgraph
of G. A directed graph G is strongly connected if and only if G has exactly one
strong component; at the other extreme, G is a dag if and only if every strong
component of G consists of a single vertex.

The strong component graph scc(G) is another directed graph obtained
from G by contracting each strong component to a single vertex and collapsing

237

6. DEPTH-FIRST SEARCH

238

parallel edges. (The strong component graph is sometimes also called the
meta-graph or condensation of G.) It’s not hard to prove (hint, hint) that scc(G)
is always a dag. Thus, at least in principle, it is possible to topologically order
the strong components of G; that is, the vertices can be ordered so that every
back edge joins two edges in the same strong component.

q’

Figure 6.13. The strong components of a graph G and the strong component graph scc(G).

It is straightforward to compute the strong component of a single vertex v
in O(V + E) time. First we compute reach(v) via whatever-first search. Then
we compute reach™*(v) = {u | v € reach(u)} by searching the reversal of G.
Finally, the strong component of v is the intersection reach(v) Nreach ' (v). In
particular, we can determine whether the entire graph is strongly connected in
O(V + E) time.

Similarly, we can compute all the strong components in a directed graph
by combining the previous algorithm with our standard wrapper function.
However, the resulting algorithm runs in O(V E) time; there are at most V strong
components, and each requires O(E) time to discover, even when the graph is a
dag. Surely we can do better! After all, we only need O(V + E) time to decide
whether every strong component is a single vertex.

6.6 Strong Components in Linear Time

In fact, there are several algorithms to compute strong components in O(V + E)
time, all of which rely on the following observation.

Lemma 6.2. Fix a depth-first traversal of any directed graph G. Each strong
component C of G contains exactly one node that does not have a parent in C.
(Either this node has a parent in another strong component, or it has no parent.)

Proof: Let C be an arbitrary strong component of G. Consider any path from
one vertex v € C to another vertex w € C. Every vertex on this path can reach w,
and thus can reach every vertex in C; symmetrically, every node on this path can
be reached by v, and thus can be reached by every vertex in C. We conclude
that every vertex on this path is also in C.

6.6. Strong Components in Linear Time

Let v be the vertex in C with the earliest starting time. If v has a parent,
then parent(v) starts before v and thus cannot be in C.

Now let w be another vertex in C. Just before DFS(v) is called, every vertex
in C is new, so there is a path of new vertices from v to w. Lemma 6.1 now
implies that w is a descendant of v in the depth-first forest. Every vertex on the
path of tree edges v to w lies in C; in particular, parent(w) € C. O

The previous lemma implies that each strong component of a directed
graph G defines a connected subtree of any depth-first forest of G. In particular,
for any strong component C, the vertex in C with the earliest starting time is the
lowest common ancestor of all vertices in C; we call this vertex the root of C.

a e
b i
f n

“““ R j
C m
h

d 1
0
I [2]
- 2 456 9 10111213141516 171819 20 21 22 23 24 2526 27 28 29 30 31 327

Figure 6.14. Strong components are contiguous in the depth-first forest.

I'll present two algorithms, both of which follow the same intuitive outline.
Let C be any strong component of G that is a sink in scc(G); we call C a sink
component. Equivalently, C is a sink component if the reach of any vertex
in C is precisely C. We can find all the strong components in G by repeatedly
finding a vertex v in some sink component (somehow), finding the vertices
reachable from v, and removing that sink component from the input graph,
until no vertices remain. This isn’t quite an algorithm yet, because it’s not clear
how to find a vertex in a sink component!

STRONGCOMPONENTS(G):
count < 0
while G is non-empty
C—o
count « count + 1

v « any vertex in a sink component of G {{Magic!))

for all vertices w in reach(v)
w.label « count
addwto C
remove C and its incoming edges from G

Figure 6.15. Almost an algorithm to compute strong components.

239

6. DEPTH-FIRST SEARCH

240

Kosaraju and Sharir’s Algorithm

At first glance, finding a vertex in a sink component quickly seems quite difficult.
However, it’s actually quite easy to find a vertex in a source component—a strong
component of G that corresponds to a source in scc(G)—using depth-first search.

Lemma 6.3. The last vertex in any postordering of G lies in a source component
of G.

Proof: Fix a depth-first traversal of G, and let v be the last vertex in the resulting
postordering. Then DFS(v) must be the last direct call to DFS made by the
wrapper algorithm DFSALL. Moreover, v is the root of one of the trees in
the depth-first forest, so any node x with x.post > v.pre is a descendant of v.
Finally, v is the root of its strong component C.

For the sake of argument, suppose there is an edge x—y such that x ¢ C
and y € C. Then x can reach y, and y can reach v, so x can reach v. Because v
is the root of C, vertex y is a descendant of v, and thus v.pre < y.pre. The edge
x—Yy guarantees that y.pre < x.post and therefore v.pre < x.post. It follows
that x is a descendant of v. But then v can reach x (through tree edges),
contradicting our assumption that x & C. a

It is easy to check (hint, hint) that rev(scc(G)) = scc(rev(G)) for any directed
graph G. Thus, the last vertex in a postordering of rev(G) lies in a sink component
of the original graph G. Thus, if we traverse the graph a second time, where the
wrapper function follows a reverse postordering of rev(G), then each call to DFS
visits exactly one strong component of G.*#

Putting everything together, we obtain the algorithm shown in Figure 6.16,
which counts and labels the strong components of any directed graph in O(V +E)
time. This algorithm was discovered (but never published) by Rao Kosaraju
in 1978, and later independently rediscovered by Micha Sharir in 1981.> The
Kosaraju-Sharir algorithm has two phases. The first phase performs a depth-first
search of rev(G), pushing each vertex onto a stack when it is finished. In the
second phase, we perform a whatever-first traversal of the original graph G,
considering vertices in the order they appear on the stack. The algorithm labels
each vertex with the root of its strong component (with respect to the second
depth-first traversal).

Figure 6.17 shows the Kosaraju-Sharir algorithm running on our example
graph. With only minor modifications to the algorithm, we can also compute
the strong component graph scc(G) in O(V + E) time.

“Again: A reverse postordering of rev(G) is not the same as a postordering of G.
5There are rumors that the same algorithm appears in the Russian literature even before
Kosaraju, but I haven’t found a reliable source for that rumor yet.

6.6. Strong Components in Linear Time

KosaRAJUSHARIR(G):
S « new empty stack
for all vertices v PusHPosTREVDFS(v, S):
mark v

unmark v
v.root < NONE

{(Phase 1: Push in postorder in rev(G)))

for each edge u—v ((Reversed!))
if u is unmarked

for all vertices v PusHPosTREVDFS(u, S)
if v is unmarked PusH(v, S)
PusHPOSTREVDFS(v, S) LABELONEDFS(v, 1):
, . V.root < r
((Pf'vase 2 DFS again in stack order)) for each edge v—w
while S is non-empty if w.root = NONE
}}f - POP(SI\)I LABELONEDFS(w,)
if v.root = NONE
LABELONEDFS(v, v)

Figure 6.16. The Kosaraju-Sharir strong components algorithm

a C E
g d
f h
ol [X
Jj 0
n
i
45 0111213141516 1718192021 2223242526 272829303132
. — — — — —
h m b
[d] [i f
o
I
45 0111213141516 1718192021 2223242526 272829303132

Figure 6.17. The Kosaraju-Sharir algorithm in action. Top: Depth-first traversal of the reversed graph.
Bottom: Depth-first traversal of the original graph, visiting root vertices in reversed postorder from the
first traversal.

241

6. DEPTH-FIRST SEARCH

242

YTarjan's Algorithm

An earlier but considerably more subtle linear-time algorithm to compute strong
components was published by Bob Tarjan in 1972.° Intuitively, Tarjan’s algorithm
identifies a source component of G, “deletes” it, and then “recursively” finds the
remaining strong components; however, the entire computation happens during
a single depth-first search.

Fix an arbitrary depth-first traversal of some directed graph G. For each
vertex v, let low(v) denote the smallest starting time among all vertices reachable
from v by a path of tree edges followed by at most one non-tree edge. Trivially,
low(v) < v.pre, because v can reach itself through zero tree edges followed by
zero non-tree edges. Tarjan observed that sink components can be characterized
in terms of this low function.

Lemma 6.4. A vertex v is the root of a sink component of G if and only if
low(v) = v.pre and low(w) < w.pre for every proper descendant w of v.

Proof: First, let v be a vertex such that low(v) = v.pre. Then there is no edge
w—Xx where w is a descendant of v and x.pre < v.pre. On the other hand, v
cannot reach any vertex y such that y.pre > v.post. It follows that v can
reach only its descendants, and therefore any descendant of v can reach only
descendants of v. In particular, v cannot reach its parent (if it has one), so v is
the root of its strong component.

Now suppose in addition that low(w) < w.pre for every descendant w of v.
Then each descendant w can reach another vertex x (which must be another
descendant of v) such that x.pre < w.pre. Thus, by induction, every descendant
of v can reach v. It follows that the descendants of v comprise the strong
component C whose root is v. Moreover, C must be a sink component, because v
cannot reach any vertex outside of C.

On the other hand, suppose v is the root of a sink component C. Then v
can reach another vertex w if and only if w € C. But v can reach all of its
descendants, and every vertex in C is a descendant of v, so v’s descendants
comprise C. If low(w) = w.pre for any other node w € C, then w would be
another root of C, which is impossible. O

Computing low(v) for every vertex v via depth-first search is straightforward;
see Figure 6.18.

Lemma 6.4 implies that after running FINDLow, we can identify the root
of every sink component in O(V + E) time (by a global whatever-first search),

5According to legend, Kosaraju apparently discovered his algorithm during an algorithms
lecture. He was supposed to present Tarjan’s algorithm, but he forgot his notes, so he had to
make up something else on the fly. The only aspect of this story that I find surprising is that
nobody tells it about Sharir or Tarjan.

6.6. Strong Components in Linear Time

FINDLOWDFS(v):
mark v
FINDLow(G): clock < clock + 1
clock < 0 v.pre « clock
for all vertices v v.low < v.pre
unmark v for each edge v—w
for all vertices v if w is unmarked
if v is unmarked FINDLowDFS(w)
FiNDLowDFS(v) v.low <« min{v.low, w.low}
else
v.low « min{v.low, w.pre}

Figure 6.18. Computing low(v) for every vertex v.

and then mark and delete those sink components in O(V + E) additional time
(by calling whatever-first search at each root), and then recurse. Unfortunately,
the resulting algorithm might require V iterations, each removing only a single
vertex, naively giving us a total running time of O(VE).

To speed up this strategy, Tarjan’s algorithm maintains an auxiliary stack of
vertices (separate from the recursion stack). Whenever we start a new vertex v,
we push it onto the stack. Whenever we finish a vertex v, we compare v.low
with v.pre. Then the first time we discover that v.low = v.pre, we know three
things:

* Vertex v is the root of a sink component C.
* All vertices in C appear consecutively at the top of the auxiliary stack.
* The deepest vertex in C on the auxiliary stack is v.

At this point, we can identify the vertices in C by popping them off the auxiliary
stack one by one, stopping when we pop v.

We could delete the vertices in C and recursively compute the strong
components of the remaining graph, but that would be wasteful, because we
would repeat verbatim all computation done before visiting v. Instead, we
label each vertex in C, identifying v as the root of its strong component, and
then ignore labeled vertices for the rest of the depth-first search. Formally, this
modification changes the definition of low(v) to the smallest starting time among
all vertices in the same strong component as v that v can reach by a path of
tree edges followed by at most one non-tree edge. But to prove correctness, it’s
easier to observe that ignoring labeled vertices leads the algorithm to exactly
the same behavior as actually deleting them.

Finally, Tarjan’s algorithm is shown in Figure 6.19, with the necessary
modifications from FinpLow (Figure 6.18) indicated in bold red. The running
time of the algorithm can be split into two parts. Each vertex is pushed onto S
once and popped off S once, so the total time spent maintaining the auxiliary
stack (the red stuff) is O(V). If we ignore the auxiliary stack maintenance, the

243

6. DEPTH-FIRST SEARCH

rest of the algorithm is just a standard depth-first search. We conclude that the
algorithm runs in O(V + E) time.

TARJANDFES(v):
mark v
clock « clock + 1
v.pre < clock
TARJAN(G): v.low « v.pre
clock < 0 PusHu(S,v)
S — new empty stack for each edge v—w
for all vertices v if w is unmarked
unmark v TARJANDFS(w)
v.root < NONE v.low « min{v.low, w.low}
for all vertices v else if w.root = NoNE
if v is unmarked v.low « min{v.low, w.pre}
TARJANDFS(v) if v.low = v.pre
repeat
w «— Pop(S)
W.root < v
untilw =v

Figure 6.19. Tarjan’'s strong components algorithm.

Exercises

Depth-first search, topological sort, and strong components
0. (a) Describe an algorithm to compute the reversal rev(G) of a directed graph
in O(V + E) time.

(b) Prove that for every directed graph G, the strong component graph
scc(G) is acyclic.

(c) Prove that scc(rev(G)) = rev(scc(G)) for every directed graph G.

(d) Fix an arbitrary directed graph G. For any vertex v of G, let S(v) denote
the strong component of G that contains v. For all vertices u and v of G,
prove that u can reach v in G if and only if S(u) can reach S(v) in scc(G).

1. A directed graph G is semi-connected if, for every pair of vertices u and v,
either u is reachable from v or v is reachable from u (or both).

(a) Give an example of a directed acyclic graph with a unique source that is
not semi-connected.

(b) Describe and analyze an algorithm to determine whether a given directed
acyclic graph is semi-connected.

244

Exercises

(c) Describe and analyze an algorithm to determine whether an arbitrary
directed graph is semi-connected.

2. The police department in the city of Sham-Poobanana has made every street
in the city one-way. Despite widespread complaints from confused motorists,
the mayor claims that it is possible to legally drive from any intersection in
Sham-Poobanana to any other intersection.

(a) The city needs to either verify or refute the mayor’s claim. Formalize this
problem in terms of graphs, and then describe and analyze an algorithm
to solve it.

(b) After running your algorithm from part (a), the mayor reluctantly admits
that she was lying misinformed. Call an intersection x good if, for any
intersection y that one can legally reach from x, it is possible to legally
drive from y back to x. Now the mayor claims that over 95% of the
intersections in Sham-Poobanana are good. Describe and analyze an
efficient algorithm to verify or refute her claim.

For full credit, both algorithms should run in linear time.

3. Suppose we are given a directed acyclic graph G with a unique source s
and a unique sink t. A vertex v ¢ {s,t} is called an (s, t)-cut vertex if
every path from s to t passes through v, or equivalently, if deleting v

makes t unreachable from s. Describe and analyze an algorithm to find
every (s, t)-cut vertex in G.

NI

Figure 6.20. A directed acyclic graph with three (s, t)-cut vertices.

4. A vertex v in a connected undirected graph G is called a cut vertex if the
subgraph G — v (obtained by removing v from G) is disconnected.

Figure 6.21. An undirected graph with four cut vertices.

245

6. DEPTH-FIRST SEARCH

246

(a)

(b)

(o)

Describe a linear-time algorithm that determines, given an undirected
graph G and a vertex v, whether v is a cut vertex in G. What is the
running time to find all cut vertices by trying your algorithm for each
vertex?

Let T be a depth-first spanning tree of an undirected graph G.

i. Prove that the root of T is a cut vertex of G if and only if it has more
than one child in T.

ii. Prove that a non-root vertex v is a cut vertex of G if and only if at
least one descendant (in T) of each child of v (in T) is a neighbor
(in G) of some proper ancestor of v (in T).

[Hint: These claims no longer hold if T not a depth-first spanning tree
and/or G is a directed graph.]

Describe an algorithm that identifies every cut vertex in a given undi-
rected graph in O(V + E) time.

. An edge e in a connected undirected graph G is called a bridge (or a cut edge)

if the subgraph G — e (obtained by removing e from G) is disconnected.

(@

(b)

(o)

(d)

Given G and edge e describe a linear-time algorithm that determines
whether e is a bridge or not. What is the running time to find all bridges
by trying your algorithm for each edge?

Let T be an arbitrary spanning tree of G. Prove that every bridges of G is
also an edge in T. This claim implies that G has at most V — 1 bridges.
How does this information improve your algorithm from part (a) to find
all bridges?

Now suppose we root T at an arbitrary vertex r. For any vertex v, let T,
denote the subtree of T rooted at v; for example, T, = T. Let uv be an
arbitrary edge of T, where u is the parent of v. Prove that uv is a bridge
of G if and only if uv is the only edge in G with exactly one endpoint
inT,.

Describe a linear-time algorithm to identify every bridge in G. [Hint:
Let T be a depth-first spanning tree of G.]

. The transitive closure GT of a directed graph G is a directed graph with

the same vertices as G, that contains any edge u—v if and only if there is a
directed path from u to v in G. A transitive reduction of G is a graph with
the smallest possible number of edges whose transitive closure is G'. The
same graph may have several transitive reductions.

(@

Describe an efficient algorithm to compute the transitive closure of a
given directed graph.

Exercises

(b) Prove that a directed graph G has a unique transitive reduction if and
only if G is acyclic.

(c) Describe an efficient algorithm to compute a transitive reduction of a
given directed graph.

7. One of the oldest algorithms for exploring arbitrary connected graphs was
proposed by Gaston Tarry in 1895, as a systematic procedure for solving
mazes.” The input to Tarry’s algorithm is an undirected graph G; however,
for ease of presentation, we formally split each undirected edge uv into two
directed edges u—v and v—u. (In an actual implementation, this split is
trivial; the algorithm simply uses the given adjacency list for G as though G
were directed.)

RECTARRY(V):

mark v {("visit v"))
if there is a white arc v—w
if w is unmarked
color w—v green
color v—w red
RECTARRY(W)

TARRY(G):

unmark all vertices of G
color all edges of G white
s « any vertex in G

} (“traverse v—w"))
RECTARRY(S)

else if there is a green arc v—w
color v—w red

RECTARRY (W) } {(‘traverse v—w"))

We informally say that Tarry’s algorithm “visits” vertex v every time
it marks v, and it “traverses” edge v—w when it colors that edge red and
recursively calls RECTARRY(w). Unlike our earlier graph traversal algorithm,
Tarry’s algorithm can mark same vertex multiple times.

(a) Describe how to implement Tarry’s algorithm so that it runs in O(V + E)
time.
(b) Prove that no directed edge in G is traversed more than once.

(c) When the algorithm visits a vertex v for the kth time, exactly how many
edges into v are red, and exactly how many edges out of v are red?
[Hint: Consider the starting vertex s separately from the other vertices.]

(d) Prove each vertex v is visited at most deg(v) times, except the starting
vertex s, which is visited at most deg(s)+1 times. This claim immediately
implies that TARRY(G) terminates.

(e) Prove that the last vertex visited by TARRY(G) is the starting vertex s.

7Even older graph-traversal algorithms were described by Charles Trémaux in 1882, by
Christian Wiener in 1873, by Carl Hierholzer in 1873, and (implicitly) by Leonhard Euler in 1736.
In particular, Wiener’s algorithm is equivalent to depth-first search in connected undirected
graphs.

247

6. DEPTH-FIRST SEARCH

248

(f) For every vertex v that TARRY(G) visits, prove that all edges into v and
out of v are red when TARRY(G) halts. [Hint: Consider the vertices in
the order that they are marked for the first time, starting with s, and
prove the claim by induction.]

(g) Prove that TARRY(G) visits every vertex of G. This claim and the previous
claim imply that TARRY(G) traverses every edge of G exactly once.

. Consider the following variant of Tarry’s graph-traversal algorithm; this

variant traverses green edges without recoloring them red and assigns two
numerical labels to every vertex:

REcTARRY2(v, clock):
if v is unmarked
v.pre < clock; clock « clock +1
mark v

TarRRY2(G):
unmark all vertices of G
color all edges of G white
s « any vertex in G
RECTARRY2(s, 1)

if there is a white arc v—w
if w is unmarked
color w—v green
color v—w red
RECTARRY2(w, clock)

else if there is a green arc v—w
v.post « clock; clock « clock + 1
RECTARRY2(w, clock)

Prove or disprove the following claim: When TARRY2(G) halts, the green
edges define a spanning tree and the labels v.pre and v.post define a preorder
and postorder labeling that are all consistent with a single depth-first search
of G. In other words, prove or disprove that TARRY2 produces the same
output as depth-first search, even though it visits the edges in a completely
different order.

. You have a collection of n lock-boxes and m gold keys. Each key unlocks at

most one box. However, each box might be unlocked by one key, by multiple
keys, or by no keys at all. There are only two ways to open each box once it
is locked: Unlock it properly (which requires having one matching key in
your hand), or smash it to bits with a hammer.

Your baby brother, who loves playing with shiny objects, has somehow
managed to lock all your keys inside the boxes! Luckily, your home security
system recorded everything, so you know exactly which keys (if any) are
inside each box. You need to get all the keys back out of the boxes, because
they are made of gold. Clearly you have to smash at least one box.

(a) Your baby brother has found the hammer and is eagerly eyeing one
of the boxes. Describe and analyze an algorithm to determine if it is

Exercises

10.

11.

possible to retrieve all the keys without smashing any box except the
one your brother has chosen.

(b) Describe and analyze an algorithm to compute the minimum number of
boxes that must be smashed to retrieve all the keys.

Suppose you are teaching an algorithms course. In your second midterm,
you give your students a drawing of a graph and ask then to indicate a
breadth-first search tree and a depth-first search tree rooted at a particular
vertex. Unfortunately, once you start grading the exam, you realize that the
graph you gave the students has several such spanning trees—far too many
to list. Instead, you need a way to tell whether each student’s submission is
correct!

In each of the following problems, suppose you are given a connected
graph G, a start vertex s, and a spanning tree T of G.

(a) Suppose G is undirected. Describe and analyze an algorithm to decide
whether T is a depth-first spanning tree rooted at s.

(b) Suppose G is undirected. Describe and analyze an algorithm to decide
whether T is a breadth-first spanning tree rooted at s. [Hint: It’s not
enough for T to be an unweighted shortest-path tree. Yes, this is the
right chapter for this problem!]

(c) Suppose G is directed. Describe and analyze an algorithm to decide
whether T is a breadth-first spanning tree rooted at s. [Hint: Solve
part (b) first.]

(d) Suppose G is directed. Describe and analyze an algorithm to decide
whether T is a depth-first spanning tree rooted at s.

Several modern programming languages, including JavaScript, Python,
Perl, and Ruby, include a feature called parallel assignment, which allows
multiple assignment operations to be encoded in a single line of code. For
example, the Python code x,y = 0,1 simultaneously sets x to 0 and y to 1.
The values of the right-hand side of the assignment are all determined by
the old values of the variables. Thus, the Python code a,b = b, a swaps the
values of a and b, and the following Python code computes the nth Fibonacci
number:
def fib(n):
prev, curr =1, 0
while n > @:
prev, curr, n = curr, prevtcurr, n-1
return curr
Suppose the interpreter you are writing needs to convert every parallel

assignment into an equivalent sequence of individual assignments. For

249

6. DEPTH-FIRST SEARCH

250

example, the parallel assignment a,b = 0,1 can be serialized in either order—
either a=0; b=1 or a=0; b=1—but the parallel assignment x,y = x+1,x+y
can only be serialized as y=x+y; x=x+1. Serialization may require one or
more additional temporary variables; for example, serializing a,b =b,a
requires one temporary variable, and serializing x,y = x+y, x-y requires two
temporary variables.

(a) Describe an algorithm to determine whether a given parallel assignment
can be serialized without additional temporary variables.

(b) Describe an algorithm to determine whether a given parallel assignment
can be serialized with exactly one additional temporary variable.

Assume that the given parallel assignment involves only simple integer
variables (no indirection via pointers or arrays); no variable appears on the
left side more than once; and expressions on the right side have no side
effects. Don’t worry about the details of parsing the assignment statement;
just assume (but describe!) an appropriate graph representation.

Dynamic Programming

12.

13.

Suppose we are given a directed acyclic graph G whose nodes represent jobs
and whose edges represent precedence constraints; that is. each edge u—v
indicates the job u must be completed before job v begins. Each node v also
has a weight T(v) indicating the time required to execute job v.

(a) Describe an algorithm to determine the shortest interval of time in which
all jobs in G can be executed.

(b) Suppose the first job starts at time 0. Describe an algorithm to determine,
for each vertex v, the earliest time when job v can begin.

(c) Now describe an algorithm to determine, for each vertex v, the latest time
when job v can begin without violating the precedence constraints or
increasing the overall completion time (computed in part (a)), assuming
that every job except v starts at its earliest start time (computed in
part (b)).

Let G be a directed acyclic graph with a unique source s and a unique sink t.

(a) A Hamiltonian path in G is a directed path in G that contains every vertex
in G. Describe an algorithm to determine whether G has a Hamiltonian
path.

(b) Suppose the vertices of G have weights. Describe an efficient algorithm
to find the path from s to ¢t with maximum total weight.

Exercises

(c) Suppose we are also given an integer £. Describe an efficient algorithm
to find the maximum-weight path from s to t that contains at most £
edges. (Assume there is at least one such path.)

(d) Suppose some of the vertices of G are marked as important, and we
are also given an integer k. Describe an efficient algorithm to find the
maximum-weight path from s to ¢t that visits at least k important vertices.
(Assume there is at least one such path.)

(e) Describe an algorithm to compute the number of paths from s to t in G.
(Assume that you can add arbitrarily large integers in O(1) time.)

14. Let G be a directed acyclic graph whose vertices have labels from some fixed
alphabet, and let A[1..£] be a string over the same alphabet. Any directed
path in G has a label, which is a string obtained by concatenating the labels
of its vertices.

(a) Describe an algorithm that either finds a path in G whose label is A or
correctly reports that there is no such path.

(b) Describe an algorithm to find the number of paths in G whose label is A.
(Assume that you can add arbitrarily large integers in O(1) time.)

(c) Describe an algorithm to find the longest path in G whose label is a
subsequence of A.

(d) Describe an algorithm to find the shortest path in G whose label is a
supersequence of A.

(e) Describe an algorithm to find a path in G whose label has minimum edit
distance from A.

15. A polygonal path is a sequence of line segments joined end-to-end; the
endpoints of these line segments are called the vertices of the path. The
length of a polygonal path is the sum of the lengths of its segments. A
polygonal path with vertices (x1, y1), (X9, ¥2), - .., (X%, ¥Yx) is monotonically
increasing if x; < x;,; and y; < y;,; for every index i—informally, each
vertex of the path is above and to the right of its predecessor.

Figure 6.22. A monotonically increasing polygonal path with seven vertices through a set of points

251

6. DEPTH-FIRST SEARCH

252

16.

17.

Suppose you are given a set S of n points in the plane, represented as two
arrays X[1..n]and Y[1..n]. Describe and analyze an algorithm to compute
the length of the longest monotonically increasing path with vertices in S.
Assume you have a subroutine LENGTH(x, y, x’, y’) that returns the length
of the segment from (x, y) to (x’, y').

For any two nodes u and w in a directed acyclic graph G, the interval
G[u,w] is the union of all directed paths in G from u to v. Equivalently,
G[u,w] consists of all vertices v such that v € reach(u) and w € reach(x),
together with all the edges in G connecting those vertices.

Suppose we are given a directed acyclic graph G, in which every vertex
has a numerical weight, which may be positive, negative, or zero.

(a) Describe an efficient algorithm to find the maximum-weight interval
in G, where the weight of each interval is the sum of the weights of its
vertices.

(b) Describe an efficient algorithm to find the largest vertex weight in every
interval in G. Your algorithm should compute a two-dimensional array
MaxWt[1..V,1..V] where each entry MaxWt[u,w] is the maximum
weight among all vertices in the interval G[u, w]. In particular, if G[u, w]
is empty, then MaxWt[u, w] should be —oo.

Let G be a directed acyclic graph whose vertices have labels from some fixed
alphabet. Any directed path in G has a label, which is a string obtained by
concatenating the labels of its vertices. Recall that a palindrome is a string
that is equal to its reversal.

(a) Describe and analyze an algorithm to find the length of the longest
palindrome that is the label of a path in G. For example, given the graph
in Figure 6.23, your algorithm should return the integer 6, which is the
length of the palindrome HANNAH.

Figure 6.23. A dag whose longest palindrome path label has length 6.

Exercises

18.

19.

20.

(b) Describe an algorithm to find the longest palindrome that is a sub-
sequence of the label of a path in G.

(c) Suppose G has a single source s and a single sink t. Describe an algorithm
to find the shortest palindrome that is a supersequence of the label of a
path in G from s to t.

Suppose you are given two directed acyclic graphs G and H in which every
node has a label from some finite alphabet; different nodes may have the
same label. The label of a path in either dag is the string obtained by
concatenating the labels of its vertices.

(a) Describe and analyze an algorithm to compute the length of the longest
string that is both the label of a path in G and the label of a path in H.

(b) Describe and analyze an algorithm to compute the length of the longest
string that is both a subsequence of the label of a path in G and a
subsequence of the label of a path in H.

(c) Describe and analyze an algorithm to compute the length of the shortest
string that is both a supersequence of the label of a path in G and a
supersequence of the label of a path in H. [Hint: This is easier than it
looks.]

Let G be an arbitrary (not necessarily acyclic) directed graph in which every
vertex v has an integer weight w(v).

(a) Describe an algorithm to find the longest directed path in G whose vertex
weights define an increasing sequence.

(b) Describe and analyze an algorithm to determine the maximum-weight
vertex reachable from each vertex in G. That is, for each vertex v, your
algorithm needs to compute maxreach(v) := max{w(x) | x € reach(v)}.

(a) Suppose you are given a directed acyclic graph G with n vertices and an
integer k < n. Describe an efficient algorithm to find a set of at most k
vertex-disjoint paths that visit every vertex in G.

(b) Now suppose the edges of the input dag G have weights, which may be
positive, negative, or zero. Describe an efficient algorithm to find a set
of at most k vertex-disjoint paths with minimum total weight that visit
every vertex in G.

Your algorithms should run in O(n**¢) time for some small constant c.
A single vertex is a path with weight zero. (We will see a more efficient
algorithm for part (a) in Chapter 11.)

253

6. DEPTH-FIRST SEARCH

254

21

22.

. Kris is a professional rock climber who is competing in the U.S. climbing
nationals. The competition requires Kris to use as many holds on the
climbing wall as possible, using only transitions that have been explicitly
allowed by the route-setter.

The climbing wall has n holds. Kris is given a list of m pairs (x,y) of
holds, each indicating that moving directly from hold x to hold y is allowed;
however, moving directly from y to x is not allowed unless the list also
includes the pair (y, x). Kris needs to figure out a sequence of allowed
transitions that uses as many holds as possible, since each new hold increases
his score by one point. The rules allow Kris to choose the first and last hold
in his climbing route. The rules also allow him to use each hold as many
times as he likes; however, only the first use of each hold increases Kris’s
score.

(a) Define the natural graph representing the input. Describe and analyze
an algorithm to solve Kris’s climbing problem if you are guaranteed that
the input graph is a dag.

(b) Describe and analyze an algorithm to solve Kris’s climbing problem with
no restrictions on the input graph.

Both of your algorithms should output the maximum possible score that Kris
can earn.

There are n galaxies connected by m intergalactic teleport-ways. Each
teleport-way joins two galaxies and can be traversed in both directions.
However, the company that runs the teleport-ways has established an
extremely lucrative cost structure: Anyone can teleport further from their
home galaxy at no cost whatsoever, but teleporting toward their home galaxy
is prohibitively expensive.

Judy has decided to take a sabbatical tour of the universe by visiting as
many galaxies as possible, starting at her home galaxy. To save on travel
expenses, she wants to teleport away from her home galaxy at every step,
except for the very last teleport home.

(a) Describe and analyze an algorithm to compute the maximum number of
galaxies that Judy can visit. Your input consists of an undirected graph G
with n vertices and m edges describing the teleport-way network, an
integer 1 < s < n identifying Judy’s home galaxy, and an array D[1..n]
containing the distances of each galaxy from s.

Y(b) Just before embarking on her universal tour, Judy wins the space lottery,
giving her just enough money to afford two teleports toward her home
galaxy. Describe a new algorithm to compute the maximum number of
distinct galaxies Judy can visit. She can visit the same galaxy more than
once, but crucially, only the first visit counts toward her total.

Exercises

23.

*92.

25.

The Doctor and River Song decide to play a game on a directed acyclic
graph G, which has one source s and one sink t.

Each player has a token on one of the vertices of G. At the start of the
game, The Doctor’s token is on the source vertex s, and River’s token is on
the sink vertex t. The players alternate turns, with The Doctor moving first.
On each of his turns, the Doctor moves his token forward along a directed
edge; on each of her turns, River moves her token backward along a directed
edge.

If the two tokens ever meet on the same vertex, River wins the game.
(“Hello, Sweetie!”) If the Doctor’s token reaches t or River’s token reaches s
before the two tokens meet, then the Doctor wins the game.

Describe and analyze an algorithm to determine who wins this game,
assuming both players play perfectly. That is, if the Doctor can win no
matter how River moves, then your algorithm should output “Doctor”, and
if River can win no matter how the Doctor moves, your algorithm should
output “River”. (Why are these the only two possibilities?) The input to
your algorithm is the graph G.

Let x = x1X5...X, be a given n-character string over some finite alphabet %,
and let A be a deterministic finite-state machine with m states over the same
alphabet.

(a) Describe and analyze an algorithm to compute the length of the longest
subsequence of x that is accepted by A. For example, if A accepts the
language (AR)* and x = ABRACADABRA, your algorithm should output the
number 4, which is the length of the subsequence ARAR.

(b) Describe and analyze an algorithm to compute the length of the short-
est supersequence of x that is accepted by A. For example, if A ac-
cepts the language (ABCDR)* and x = ABRACADABRA, your algorithm
should output the number 25, which is the length of the supersequence
ABCDRABCDRABCDRABCDRABCDR.

Analyze your algorithms in terms of the length n of the input string, the
number m of states in the finite-state machine, and the size of the alphabet .

Not every dynamic programming algorithm can be modeled as finding
an optimal path through a directed acyclic graph, but every dynamic
programming algorithm does process some underlying dependency graph
in postorder.

8The labels s and t are abbreviations for the Untempered Schism and the Time Vortex, or

the Shining World of the Seven Systems (also known as Gallifrey) and Trenzalore, or Skaro and
Telos, or Something else Timey-wimey. It’s all very complicated, never mind.

255

6. DEPTH-FIRST SEARCH

256

(a)

(b)

()

Suppose we are given a directed acyclic graph G where every node stores
a numerical search key. Describe and analyze an algorithm to find the
largest binary search tree that is a subgraph of G.

Suppose we are given a directed acyclic graph G and two vertices s and ¢.
Describe an algorithm to compute the number of directed paths in G
from s to t. (Assume that any arithmetic operation requires O(1) time.)
Let G be a directed acyclic graph with the following features:

* G has a single source s and several sinks tq, to, ..., t.

* Each edge v—w has an associated weight p(v—w) between 0 and 1.

* For each non-sink vertex v, the total weight of all edges leaving v

is 1; thatis,), p(v—w) = 1.

The weights p(v—w) define a random walk in G from the source s to some
sink t;; after reaching any non-sink vertex v, the walk follows edge v—w
with probability p(v—w). All probabilities are mutually independent.
Describe and analyze an algorithm to compute the probability that this

random walk reaches sink t;, for every index i. (Assume that each
arithmetic operation takes only O(1) time.)

