CS/ECE 374 A Lab 4 — September 15 Fall 2021

Let L be an arbitrary regular language over the alphabet ¥ = {0, 1}. Prove that the following
languages are also regular. (You probably won't get to all of these during the lab session.)

1. FLipOpDps(L) := {flipOdds(w) | w € L}, where the function flipOdds inverts every odd-
indexed bit in w. For example:

Solution: Let M = (Q,s,A, d) be an arbitrary DFA that accepts L. We construct a new
DFA M’ =(Q’,s’,A’, 8") that accepts FLIpPODDs(L) as follows.

Intuitively, M’ receives some string flipOdds(w) as input, restores every other bit
to obtain w, and simulates M on the restored string w.

Each state (q,flip) of M’ indicates that M is in state g, and we need to flip the
next input bit if flip = TRUE.

Q' = Q x {TRUE, FALSE}

s’ = (s, TRUE)
A=
&5'((q,flip),a) =

CS/ECE 374 A Lab 4 — September 15 Fall 2021

2. UNFLIPODD1s(L) := {w € * | flipOdd1s(w) € L}, where the function flipOdd1 inverts
every other 1 bit of its input string, starting with the first 1. For example:

flipOdd1s(0000111100101010) = 0000010100001000

Solution: Let M = (Q,s,A, §) be an arbitrary DFA that accepts L. We construct a new
DFA M’ = (Q’,s’,A’,8") that accepts UNFLIPODD1s(L) as follows.

Intuitively, M’ receives some string w as input, flips every other 1 bit, and then
simulates M on the transformed string.

Each state (q,flip) of M’ indicates that M is in state g, and we need to flip the
next 1 bit if and only if flip = TRUE.

Q' = Q x {TRUE, FALSE}
s’ = (s, TRUE)
A=

5'((g.flip),a) =

CS/ECE 374 A Lab 4 — September 15 Fall 2021

3. FLIPODD1s(L) := {flipOdd1s(w) | w € L}, where the function flipOdd1 is defined as in the
previous problem.

Solution: Let M = (Q,s,A, &) be an arbitrary DFA that accepts L. We construct a new
NFA M’ = (Q’,s’,A’,5") that accepts FLIpPODD1s(L) as follows.

Intuitively, M’ receives some string flipOdd1s(w) as input, guesses which @ bits to
restore to 1s, and simulates M on the restored string w. No string in FLIPODD1s(L)
has two 1s in a row, so if M’ ever sees 11, it must reject.

Each state (q,flip) of M’ indicates that M is in state q, and we need to flip some 0
bit before the next 1 bit if flip = TRUE.

Q' = Q x {TRUE, FALSE}
s’ = (s, TRUE)

A =
&'((q.flip),a) =

CS/ECE 374 A Lab 4 — September 15 Fall 2021

4. SHUFFLE(L) := {shuﬁ‘le(w,x) | w,x € L and |w| = |x|}, where the function shuffle is de-
fined recursively as follows:

X ifw=e¢

shuffle(w, x) := {

a - shuffle(x,y) if w=ay for some a € ¥ and some y € ©*

For example, shuffle(0001101,1111001) =01010111100011.

Solution: Let M = (Q,s,A, &) be an arbitrary DFA that accepts L. We construct a new
DFA M’ =(Q’,s’,A’,8’) that accepts SHUFFLE(L) as follows.

Intuitively, M’ reads the string shuffle(w, x) as input, splits the string into the
subsequences w and x, and passes those strings to two independent copies of M.
Let M, denote the copy that processes the first string w, and let M, denote the copy
that processes the second string x.

Each state (q;, g, next) indicates that machine M, is in state g;, machine M, is in
state q,, and next indicates whether M; or M, receives the next input bit.

Q' =QxQx{1,2}

s’ =(s,s,1)
A=

5/((q1) q2, next), Cl) =

