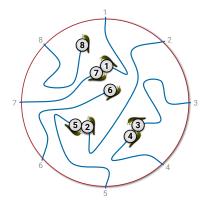
CS/ECE 374 A ← Fall 2021 ◆ Homework 7 ◆

Due Tuesday, October 19, 2021 at 8pm Central Time

1. Every year, as part of its annual meeting, the Antarctican Snail Lovers of Upper Glacierville hold a Round Table Mating Race. Several high-quality breeding snails are placed at the edge of a round table. The snails are numbered in order around the table from 1 to *n*. During the race, each snail wanders around the table, leaving a trail of slime behind it. The snails have been specially trained never to fall off the edge of the table or to cross a slime trail, even their own. If two snails meet, they are declared a breeding pair, removed from the table, and whisked away to a romantic hole in the ground to make little baby snails. Note that some snails may never find a mate, even if the race goes on forever.



The end of a typical Antarctican SLUG race. Snails 6 and 8 never find mates. The organizers must pay M[3,4]+M[2,5]+M[1,7].

For every pair of snails, the Antarctican SLUG race organizers have posted a monetary reward, to be paid to the owners if that pair of snails meets during the Mating Race. Specifically, there is a two-dimensional array M[1..n,1..n] posted on the wall behind the Round Table, where M[i,j] = M[j,i] is the reward to be paid if snails i and j Meet. Rewards may be positive, negative, or zero.

Describe and analyze an algorithm to compute the maximum total reward that the organizers could be forced to pay, given the array M as input.

- 2. Suppose you are given a NFA $M = (\{0,1\}, Q, s, A, \delta)$ without ε -transitions and a binary string $w \in \{0,1\}^*$. Describe and analyze an efficient algorithm to determine whether M accepts w. Concretely, the input NFA M is represented as follows:
 - $Q = \{1, 2, ..., k\}$ for some integer k.
 - The start state *s* is state 1.
 - Accepting states are represented by a boolean array Acc[1..k], where Acc[q] = TRUE if and only if $q \in A$.
 - The transition function δ is represented by a boolean array inDelta[1..k, 0..1, 1..k], where inDelta[p, a, q] = True if and only if $q \in \delta(p, a)$.

Your input consists of the integer k, the array Acc[1...k], the array inDelta[1...k, 0...1, 1...k], and the input string w[1...n]. Your algorithm should return True if M accepts w, and False if M does not accept w. Report the running time of your algorithm as a function of k (the number of states in M) and n (the length of w). [Hint: Do not convert M to a DFA!!]

Solved Problems

3. A string *w* of parentheses (and) and brackets [and] is *balanced* if and only if *w* is generated by the following context-free grammar:

$$S \rightarrow \varepsilon \mid (S) \mid [S] \mid SS$$

For example, the string w = ([()][]())[()()]() is balanced, because w = xy, where

$$x = ([()][]())$$
 and $y = [()()]()$.

Describe and analyze an algorithm to compute the length of a longest balanced subsequence of a given string of parentheses and brackets. Your input is an array A[1..n], where $A[i] \in \{(,),[,]\}$ for every index i.

Solution: Suppose A[1..n] is the input string. For all indices i and k, let LBS(i,k) denote the length of the longest balanced subsequence of the substring A[i..k]. We need to compute LBS(1,n). This function obeys the following recurrence:

$$LBS(i,j) = \begin{cases} 0 & \text{if } i \ge k \\ \max \left\{ \sum_{k=1}^{k-1} (LBS(i,j) + LBS(j+1,k)) \right\} & \text{if } A[i] \sim A[k] \\ \max_{j=1}^{k-1} (LBS(i,j) + LBS(j+1,k)) & \text{otherwise} \end{cases}$$

Here $A[i] \sim A[k]$ indicates that A[i] is a left delimiter and A[k] is the corresponding right delimiter: Either A[i] = (and A[k] =), or A[i] = [and A[k] =].

We can memoize this function into a two-dimensional array LBS[1..n, 1..n]. Because each entry LBS[i, j] depends only on entries in later rows or earlier columns (or both), we can evaluate this array row-by-row from bottom up in the outer loop, scanning each row from left to right in the inner loop. The resulting algorithm runs in $O(n^3)$ time.

Rubric: 10 points, standard dynamic programming rubric

4. Oh, no! You've just been appointed as the new organizer of Giggle, Inc.'s annual mandatory holiday party! The employees at Giggle are organized into a strict hierarchy, that is, a tree with the company president at the root. The all-knowing oracles in Human Resources have assigned a real number to each employee measuring how "fun" the employee is. In order to keep things social, there is one restriction on the guest list: An employee cannot attend the party if their immediate supervisor is also present. On the other hand, the president of the company *must* attend the party, even though she has a negative fun rating; it's her company, after all.

Describe an algorithm that makes a guest list for the party that maximizes the sum of the "fun" ratings of the guests. The input to your algorithm is a rooted tree T describing the company hierarchy, where each node v has a field v.fun storing the "fun" rating of the corresponding employee.

Solution (two functions): We define two functions over the nodes of *T*.

- MaxFunYes(v) is the maximum total "fun" of a legal party among the descendants of v, where v is definitely invited.
- MaxFunNo(v) is the maximum total "fun" of a legal party among the descendants of v, where v is definitely not invited.

We need to compute *MaxFunYes*(*root*). These two functions obey the following mutual recurrences:

$$\begin{aligned} \mathit{MaxFunYes}(v) &= v.\mathit{fun} + \sum_{\substack{\text{children } w \text{ of } v}} \mathit{MaxFunNo}(w) \\ \mathit{MaxFunNo}(v) &= \sum_{\substack{\text{children } w \text{ of } v}} \max\{\mathit{MaxFunYes}(w), \mathit{MaxFunNo}(w)\} \end{aligned}$$

(These recurrences do not require separate base cases, because $\sum \emptyset = 0$.) We can memoize these functions by adding two additional fields *v.yes* and *v.no* to each node *v* in the tree. The values at each node depend only on the vales at its children, so we can compute all 2n values using a postorder traversal of T.

BESTPARTY(T):
COMPUTEMAXFUN(T.root)
return T.root.yes

```
\frac{\text{ComputeMaxFun}(v):}{v.yes \leftarrow v.fun}
v.no \leftarrow 0
for all children w of v
\text{ComputeMaxFun}(w)
v.yes \leftarrow v.yes + w.no
v.no \leftarrow v.no + \max\{w.yes, w.no\}
```

(Yes, this is still dynamic programming; we're only traversing the tree recursively because that's the most natural way to traverse trees!^a) The algorithm spends O(1) time at each node, and therefore runs in O(n) time altogether.

^aA naïve recursive implementation would run in $O(\phi^n)$ time in the worst case, where $\phi = (1+\sqrt{5})/2 \approx 1.618$ is the golden ratio. The worst-case tree is a path—every non-leaf node has exactly one child.

Solution (one function): For each node v in the input tree T, let MaxFun(v) denote the maximum total "fun" of a legal party among the descendants of v, where v may or may not be invited.

The president of the company must be invited, so none of the president's "children" in *T* can be invited. Thus, the value we need to compute is

$$root.fun + \sum_{\text{grandchildren } w \text{ of } root} MaxFun(w).$$

The function *MaxFun* obeys the following recurrence:

$$MaxFun(v) = \max \left\{ v.fun + \sum_{\text{grandchildren } x \text{ of } v} MaxFun(x) \right\}$$

$$\sum_{\text{children } w \text{ of } v} MaxFun(w)$$

(This recurrence does not require a separate base case, because $\sum \emptyset = 0$.) We can memoize this function by adding an additional field v.maxFun to each node v in the tree. The value at each node depends only on the values at its children and grandchildren, so we can compute all values using a postorder traversal of T.

BESTPARTY(T):

COMPUTEMAXFUN(T.root) $party \leftarrow T.root.fun$ for all children w of T.rootfor all children x of w $party \leftarrow party + x.maxFun$ return party

ComputeMaxFun(ν):

```
yes \leftarrow v.fun
no \leftarrow 0
for all children w of v
Compute MaxFun(w)
no \leftarrow no + w.maxFun
for all children x of w
yes \leftarrow yes + x.maxFun
v.maxFun \leftarrow max\{yes, no\}
```

(Yes, this is still dynamic programming; we're only traversing the tree recursively because that's the most natural way to traverse trees!^a)

The algorithm spends O(1) time at each node (because each node has exactly one parent and one grandparent) and therefore runs in O(n) time altogether.

Rubric: 10 points: standard dynamic programming rubric. These are not the only correct solutions.

^aLike the previous solution, a direct recursive implementation would run in $O(\phi^n)$ time in the worst case, where $\phi = (1 + \sqrt{5})/2 \approx 1.618$ is the golden ratio.