
CS/ECE 374 A = Fall 2021
9 Homework 7 :

Due Tuesday, October 19, 2021 at 8pm Central Time

1. Every year, as part of its annual meeting, the Antarctican Snail Lovers of Upper Glacierville
hold a Round Table Mating Race. Several high-quality breeding snails are placed at the
edge of a round table. The snails are numbered in order around the table from 1 to n.
During the race, each snail wanders around the table, leaving a trail of slime behind it.
The snails have been specially trained never to fall off the edge of the table or to cross a
slime trail, even their own. If two snails meet, they are declared a breeding pair, removed
from the table, and whisked away to a romantic hole in the ground to make little baby
snails. Note that some snails may never find a mate, even if the race goes on forever.

1

2

3

4

5

6

7

8 8

1

5 2

6

3
4

7

The end of a typical Antarctican SLUG race. Snails 6 and 8 never find mates.
The organizers must pay M[3,4] +M[2, 5] +M[1,7].

For every pair of snails, the Antarctican SLUG race organizers have posted a monetary
reward, to be paid to the owners if that pair of snails meets during the Mating Race.
Specifically, there is a two-dimensional array M[1 .. n, 1 .. n] posted on the wall behind
the Round Table, where M[i, j] = M[j, i] is the reward to be paid if snails i and j Meet.
Rewards may be positive, negative, or zero.

Describe and analyze an algorithm to compute the maximum total reward that the
organizers could be forced to pay, given the array M as input.

CS/ECE 374 A Homework 7 (due October 19) Fall 2021

2. Suppose you are given a NFA M = ({0,1},Q, s, A,δ) without ϵ-transitions and a binary
string w ∈ {0,1}∗. Describe and analyze an efficient algorithm to determine whether M
accepts w. Concretely, the input NFA M is represented as follows:

• Q = {1, 2, . . . , k} for some integer k.

• The start state s is state 1.

• Accepting states are represented by a boolean array Acc[1 .. k], where Acc[q] = True
if and only if q ∈ A.

• The transition function δ is represented by a boolean array inDelta[1 .. k,0 ..1, 1 .. k],
where inDelta[p, a, q] = True if and only if q ∈ δ(p, a).

Your input consists of the integer k, the array Acc[1 .. k], the array inDelta[1 .. k,0 ..1, 1 .. k],
and the input string w[1 .. n]. Your algorithm should return True if M accepts w, and
False if M does not accept w. Report the running time of your algorithm as a function of k
(the number of states in M) and n (the length of w). [Hint: Do not convert M to a DFA!!]

2

CS/ECE 374 A Homework 7 (due October 19) Fall 2021

Solved Problems

3. A string w of parentheses (and) and brackets [and] is balanced if and only if w is
generated by the following context-free grammar:

S→ ϵ | (S) | [S] | SS

For example, the string w= ([()][]())[()()]() is balanced, because w= x y , where

x = ([()] [] ()) and y = [() ()] ().

Describe and analyze an algorithm to compute the length of a longest balanced subsequence
of a given string of parentheses and brackets. Your input is an array A[1 .. n], where
A[i] ∈ {(,),[,]} for every index i.

Solution: Suppose A[1 .. n] is the input string. For all indices i and k, let LBS(i, k)
denote the length of the longest balanced subsequence of the substring A[i .. k]. We
need to compute LBS(1, n). This function obeys the following recurrence:

LBS(i, j) =































0 if i ≥ k

max







2+ LBS(i + 1, k− 1)
k−1
max
j=1

�

LBS(i, j) + LBS(j + 1, k)
�







if A[i]∼ A[k]

k−1
max
j=1

�

LBS(i, j) + LBS(j + 1, k)
�

otherwise

Here A[i] ∼ A[k] indicates that A[i] is a left delimiter and A[k] is the corresponding
right delimiter: Either A[i] = (and A[k] =), or A[i] = [and A[k] =].

We can memoize this function into a two-dimensional array LBS[1 .. n, 1 .. n].
Because each entry LBS[i, j] depends only on entries in later rows or earlier columns
(or both), we can evaluate this array row-by-row from bottom up in the outer loop,
scanning each row from left to right in the inner loop. The resulting algorithm runs
in O(n3) time.

LongestBalancedSubsequence(A[1 .. n]):
for i← n down to 1

LBS[i, i]← 0
for k← i + 1 to n

if A[i]∼ A[k]
LBS[i, k]← LBS[i + 1, k− 1] + 2

else
LBS[i, k]← 0

for j← i to k− 1
LBS[i, k]←max

�

LBS[i, k], LBS[i, j] + LBS[j + 1, k]
	

return LBS[1, n]

■

Rubric: 10 points, standard dynamic programming rubric

3

CS/ECE 374 A Homework 7 (due October 19) Fall 2021

4. Oh, no! You’ve just been appointed as the new organizer of Giggle, Inc.’s annual mandatory
holiday party! The employees at Giggle are organized into a strict hierarchy, that is, a tree
with the company president at the root. The all-knowing oracles in Human Resources have
assigned a real number to each employee measuring how “fun” the employee is. In order
to keep things social, there is one restriction on the guest list: An employee cannot attend
the party if their immediate supervisor is also present. On the other hand, the president
of the company must attend the party, even though she has a negative fun rating; it’s her
company, after all.

Describe an algorithm that makes a guest list for the party that maximizes the sum of
the “fun” ratings of the guests. The input to your algorithm is a rooted tree T describing
the company hierarchy, where each node v has a field v.fun storing the “fun” rating of the
corresponding employee.

Solution (two functions): We define two functions over the nodes of T .

• MaxFunYes(v) is the maximum total “fun” of a legal party among the descendants
of v, where v is definitely invited.

• MaxFunNo(v) is the maximum total “fun” of a legal party among the descendants
of v, where v is definitely not invited.

We need to computeMaxFunYes(root). These two functions obey the following mutual
recurrences:

MaxFunYes(v) = v.fun+
∑

children w of v

MaxFunNo(w)

MaxFunNo(v) =
∑

children w of v

max{MaxFunYes(w),MaxFunNo(w)}

(These recurrences do not require separate base cases, because
∑

∅ = 0.) We can
memoize these functions by adding two additional fields v.yes and v.no to each node
v in the tree. The values at each node depend only on the vales at its children, so we
can compute all 2n values using a postorder traversal of T .

BestParty(T):
ComputeMaxFun(T.root)
return T.root.yes

ComputeMaxFun(v):
v.yes← v.fun
v.no← 0
for all children w of v

ComputeMaxFun(w)
v.yes← v.yes+w.no
v.no← v.no+max{w.yes, w.no}

(Yes, this is still dynamic programming; we’re only traversing the tree recursively
because that’s the most natural way to traverse trees!a) The algorithm spends O(1)
time at each node, and therefore runs in O(n) time altogether. ■

aA naïve recursive implementationwould run inO(φn) time in the worst case, whereφ = (1+
p

5)/2≈
1.618 is the golden ratio. The worst-case tree is a path—every non-leaf node has exactly one child.

4

CS/ECE 374 A Homework 7 (due October 19) Fall 2021

Solution (one function): For each node v in the input tree T , let MaxFun(v) denote
the maximum total “fun” of a legal party among the descendants of v, where v may
or may not be invited.

The president of the company must be invited, so none of the president’s “children”
in T can be invited. Thus, the value we need to compute is

root.fun+
∑

grandchildren w of root

MaxFun(w).

The function MaxFun obeys the following recurrence:

MaxFun(v) =max















v.fun+
∑

grandchildren x of v

MaxFun(x)

∑

children w of v

MaxFun(w)















(This recurrence does not require a separate base case, because
∑

∅ = 0.) We can
memoize this function by adding an additional field v.maxFun to each node v in
the tree. The value at each node depends only on the values at its children and
grandchildren, so we can compute all values using a postorder traversal of T .

BestParty(T):
ComputeMaxFun(T.root)
party← T.root.fun
for all children w of T.root

for all children x of w
party← party+ x .maxFun

return party

ComputeMaxFun(v):
yes← v.fun
no← 0
for all children w of v

ComputeMaxFun(w)
no← no+w.maxFun
for all children x of w

yes← yes+ x .maxFun
v.maxFun←max{yes,no}

(Yes, this is still dynamic programming; we’re only traversing the tree recursively
because that’s the most natural way to traverse trees!a)

The algorithm spends O(1) time at each node (because each node has exactly one
parent and one grandparent) and therefore runs in O(n) time altogether. ■

aLike the previous solution, a direct recursive implementation would run in O(φn) time in the worst
case, where φ = (1+

p
5)/2≈ 1.618 is the golden ratio.

Rubric: 10 points: standard dynamic programming rubric. These are not the only correct solu-
tions.

5

