Lecture \# 9 Scribble
Acceptable vs. Decidable

Topics to cover :

- Cantor's diagonalization
- Halting Theorem (2)

TM reducability

- A langange C is acceptable if some $T M$ accepts L and unacceptable otherwise
semi-compuetable, semi decidable
twing-recognizable, 13ytable recursively enumerable
- L is decidable if some TM decides L
$l_{\text {recursive or computable }}^{\tau} \begin{gathered}\text { always } \\ \text { never loops }\end{gathered}$
Central Problem
Wont to know if a arbitrary TM will halt on an arbitsany input
$A_{T M}=\{\langle\mu, \omega\rangle \mid \mu$ is a $T M$ and μ accepts $w\}$
Is $A_{\text {tr }}$ decidable?

Infinite

- Set \mathbb{N} of natural mummer $\{1,2,3, \ldots\}$
- Set \mathbb{E} of even numbers $\{0,2,4,6, \ldots$.
- Set \mathbb{R} of real numbers $[0,1)$

Cantor's proposition: two sets have the same sire if. their elements can be paired in a 1-1 correspondence bijection
$\mathbb{N} \rightarrow \mathbb{E} \quad e=2 n \quad$ where $n \in \mathbb{N}: e \in \mathbb{E}$

Cantor's diagnolization argument

z commit exist in $\sigma \quad n \in l$
$\mathbb{N} \longrightarrow S$ of all possible infinite $\left.\begin{array}{l|llllllll}0 & 1 & 1 & 0 & 1 & 1 & 0 & \cdots & \cdots\end{array}\right)$ bi $z=001 \ldots, \ldots$

There are infinitely many languages not all lacings are enumerable

The set of Turing Machines is RE/countable. All TM can be encoded in binary strings (finite) $|\Sigma|=m$ encoding of the TM is k digits long $L(T M$ encoding $)=$ finite th of $T M$ s encoded in K digits

$$
\begin{aligned}
& -\ldots-\ldots=|\Sigma|^{k} \\
& |\Sigma|=2 \\
& k=1 \mid 0 \quad 1 \quad N=1,2,3 \ldots
\end{aligned}
$$

Ht of TM $\angle \#$ of languages
$A_{T M}=\{\langle M, \omega\rangle \mid M$ is a TM and M accept $\omega\}$
Is Am decidable?

$$
H(\langle M, w\rangle)= \begin{cases}\text { accepts if } M \text { accepts } w \\ \text { rejects if } M \text { rejects } w\end{cases}
$$

D where on input $\langle\mu\rangle$:

1. Run 1 on $\langle M,\langle M\rangle\rangle$ Does M accept itself
2. Output opposite of $\mathrm{H}<$ Complement

$$
D(\langle M\rangle)=\left\{\begin{array}{l}
\text { accept if } H(\langle M,\langle M\rangle\rangle) \text { rejects } \\
\text { reject if } H(\langle M,\langle M\rangle) \text { accepts }
\end{array}\right.
$$

$O(\langle D\rangle)=\left\{\begin{array}{l}\text { accept if } H(\langle D,\langle D\rangle\rangle) \text { rejects if } D \text { does not event } \\ \text { reject if } H(\langle D,\langle D\rangle) \text { accepts if } D \text { does accept }\end{array}\right.$
Oiagonalization Avg

Create T_{H} which decides $T\left(A_{T m}\right)$

Create V_{D} which is whit happens if we pass the dione of $T_{1 t}$ into D

$$
V_{D}=[r e j, r e j, \ldots \text { acc.... }]
$$

Reducibility:

$$
E_{\pi M}=\{\langle\mu\rangle \mid M \text { is a tM and } L(M)=\varnothing\}
$$

Is ETH decidable:
R is decider of $E_{m} \quad R$ accepts if $L(M)$ is empty
Show that a TM S can be constructed with that decodes ATM
$M_{1}=O_{n}$ input x : If $x \neq w$ reject

$$
\begin{aligned}
& x \neq w \text { reject } \\
& x=w \text { run } M \text { on } w \text { and if } \\
& M \text { accepts accept }
\end{aligned}
$$

$S=O_{n} \operatorname{imput}\langle M, w\rangle$

1. Construct $\mu_{1} \leftarrow$ accepts if μ accepts w
2. Run R on input $\left\langle M_{0}\right\rangle$ if Macceptw. then $L\left(M_{1}\right) \neq \phi$
3. If R accepts, reject, else accept
