Lecture 25 Scribble
Chat Moderators: Eliot it Tanvi

Topics: Cook-Levin Theorem
SSAT to Subset-Sum
3SAT to CSAT

NP if it has a poly-time artificer for all YES instances for all No instances tautology if a statement is alloys true " $y=x$ or $y^{1=x^{-}}$
A protiene ${ }^{(x)}$ is $N P$-hand if for every problem ${ }^{(Y)} \in N P$ Y is reducible to X.

$$
N P \text {-complete }=N P \lambda N P \text {-hand }
$$

So far:

Cook-Lerin Theorem: SAT is ND-complete
For SNJ to be NP-complete

- Mast be in NP Ⓔnaly: roly-fime certifier
- Must be NP-hard \leftarrow
\rightarrow Every NP problem reducible (in poly-time) to SAT
What does it mean for $L \in N P$?
- LEND if means that there is a nondeterministic TM (M) that will halt on a input ($\left(x\right.$) in a polynomial it ${ }^{2}$ steps $C_{p}(x 1)$
$L=\left\{x \in \mathcal{L}^{*} \mid M\right.$ accepts x in at most $p($ (H1) step $\}$

Tape

state 90 state q^{+} state $q 8$

Total table size is $O\left(p(G H)^{2}\right)$

Four types of computation that describe M on x

- T $(6, h, i)$ tope cell at position "he holding character" "b" of time cir
$-H(h, i)$: head at position h at time i
- $S(q, i):$ state q^{i} of m
- I($j, i)$ instruction i is executed at time $:$

Dotation:
$\Theta\left(x_{1}, x_{2}, x_{3}, \ldots, x_{m}\right)$ means exactly one variable is true.

$$
\equiv \bigwedge_{1 \leq i \leq j \leq k}\left(\bar{x}_{i} \vee \overline{x_{j}}\right) \wedge\left(x_{1} \vee x_{2} \vee x_{3} \cup \ldots v_{x_{m}}\right)
$$

No tow variables are true
at least one variable is true
Q_{1} : Irupat is encoded correctly

$$
\begin{aligned}
& =S\left(q_{0}, 0\right) \\
& \bigwedge_{h=1}^{n} T\left(x_{N}, h, 0\right) \bigwedge_{n=n=1}^{k(n)} T(\omega, h, 0)
\end{aligned}
$$

$$
\varphi=\bigwedge_{i=1}^{12} \varphi_{i}
$$

SAT is ND-hand

Knowing 3SNK is NP -hard
If we show 3 SAT $\leqslant_{p} X \quad x$ is also NP-hard

$$
N P \leq
$$

Example: 3SAT \leq_{p} Subiet-Sumn Problem

$$
\{3,34,4,12,5,2\} \quad \begin{aligned}
& \text { sum }=9 ? \text { yes } \\
& \text { sam }=30 ?
\end{aligned}
$$

Given a set of int, is there a now empty subset whose sum
is equal to sam? Bute Force: $O\left(2^{n} \cdot n\right)$
Recursion : $O\left(2^{n}\right)$
Dynamic : $O(n \cdot$ sum e $\operatorname{sim} \quad \cdots$
$\xrightarrow[\varphi]{\text { 3sar formula }} \xrightarrow{\text { Reducible }} \xrightarrow{\text { sat \& itgegers }\{\text { sum }}$

$$
\varphi=\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} v_{x_{3}}\right) \wedge\left(\overline{x_{1}} \vee v_{x_{2}} v \overline{x_{3}}\right) \wedge\left(x_{1}, v_{\overline{x_{2}}} v_{x_{3}}\right)
$$

3 variable assignments
4 clauses that read to be satisfied
$\varphi=A_{n y}$ assignment

$$
\begin{aligned}
& \begin{array}{llllll}
x_{1} & 1 & 0 & 0 & 1 & 0 \\
x_{1} & 1 & 0 & 0 & 0 & 0
\end{array} \text { sum }=11111
\end{aligned}
$$

$$
\begin{gathered}
\overline{x_{3}} \odot 0100 \\
\varphi=\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee x_{3}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee \bar{x}_{3}\right) \wedge\left(x_{1}, v_{x_{2}} v_{x_{3}}\right)
\end{gathered}
$$

				i		j	
$\#$	1	2	3	1	2	3	4
t_{1}	1	0	0	1	0	0	1
f_{1}	1	0	0	0	1	1	0
t_{2}	0	1	0	1	0	1	0
f_{2}	0	1	0	0	1	0	1
t_{3}	0	0	1	1	1	0	1
f_{3}	0	0	1	0	0	1	0

		i		j			
x_{1}	0	0	0	1	2	3	4
y_{1}	0	0	0	1	0	0	0
x_{2}	0	0	0	0	1	0	0
y_{2}	0	0	0	0	1	0	0
x_{3}	0	0	0	0	0	1	0
y_{3}	0	0	0	0	0	1	0
x_{4}	0	0	0	0	0	0	1
y_{4}	0	0	0	0	0	0	1

SS will use x_{j} if to of true léferals in c_{j} if at most 2

SS will use y_{j} if of tone letardes in oj are at most 1

$$
\text { sum }=111,3333
$$

If $3 S A T$ is Yes then Subset-Sum is also Yes

