Lecture 20 Scribbles Chat Moderators : Vasilis $!$ Samir

Topics: - Shortest Paths w/ Negative Edges

- Bellman - Ford Algorithm
- Floyd-Warshall Algorithm

Dijkstra's Algorithm - gives shortest path from s to all other vertices * can't tolerate negative edges

Negative Cycles

shortest walls from $A \rightarrow C$

$$
\begin{array}{ccc}
A-B-C-D-B-C-D-B-C \\
-5 & -13 & -21
\end{array}
$$

A path is a sequence of distinct vertices such that $\left(v_{i-1}, v_{i}\right)$
$\in E$
A walks is a sequence at vertices such that....

Converting directed from undirected graphs

Problem: Given graph $G=(U, E)$ which many have negative edges

1. Is there a negative cycle?
2. Givens find the shortest paths to all the other vertices.
3. Find the shortest path between all vertices.

4. Given s find the shortest paths to all the other vertices.

Observation: If we have a shortest path from $s \rightarrow v_{k}$ then $s \rightarrow v_{k-1}$ must also be a shortest path

Compute all the s.p.'s that use ledge 2 edge 3 edge
$d(v, k)$: shortest walls from s to v using at most k edges

$$
\underset{s \nmid k s v}{d(v, k)}=\min \left\{\begin{array}{l}
\min _{k} u \in V(d(u, k-1)+l(u, v)) \\
s \nmid H \rightarrow u \nmid 1 \\
d(v, k-1) \\
s, t \rightarrow v \\
k-1
\end{array}\right.
$$

Base Case: $d(s, 0)=0!d(v, 0)=\infty$

All-Pairs Shortest Path
$n O_{j i k s t r a} \rightarrow O\left(n_{m}+n^{2} \log n\right)$ assuming fancy heaps
n Bell man- Ford $\rightarrow O\left(n_{m}^{2}\right) \quad m=n^{2}$

$$
\equiv O\left(n^{4}\right)
$$

Floyd - Warsle $\rightarrow O\left(n^{3}\right)$
Floyd-Warshall Algorithm
-if we the vertices from 1 to n
-define $d_{i s t}(i, j, k)=$ length of the shortest walk for v_{i} to w_{j} where the index of the intermediate node is at most k.

$$
\operatorname{dist}\left(i_{0}, j, k\right)=\min \left\{\begin{array}{c}
\operatorname{dist}(i, j, k-1) \quad i \nmid j \\
\operatorname{dist}(i, k, k-1)+\operatorname{dist}(k, j, k-1) \\
i \nmid k \underset{v_{1}}{>} \\
v_{i}+k=1
\end{array}\right.
$$

Base Case: $\operatorname{dist}(i, j, 0)=\ell(i, j)$

