Lecture 11 Scribbles
Chat Moderators: Jun yob Eliot

Topics:-Algorithmie Reductions

- Recursions
- Divide : Conquer

What is an algorithm

- a recipe of solving specific problems utilizing
- primitive instonctures
- set of memory states
- finite descry ion

Model of Computation: basie computer with assembly

- Unit Cost RAM model
- basic dak types is a integer
- all \#'s fit in a word
- arithmetic operations ram $\partial(1)+/-/ 8 / 11$
-array allow random access
3 types of problems:
L_{0} decisision problems
\rightarrow search problems
\rightarrow optimization problems

Algorithms Analysis
L_{S} Correctness
\leftrightarrow Asymptotic Renaming Time
\rightarrow Asymptotic spue Usage

Reduction
-reducing a problem into simpler parts
$A[1, \ldots, n]$ uniqueness we want to if $A[i]=\Delta[j]$ for amy i / s
for $i=1 \rightarrow_{n}$
for $i=1 \rightarrow n$
if $A[i]=2[5]$ if;
return false
setwin true
$O\left(n^{2}\right)$

1. hash map $O(n)$
2. Sort $A \quad O(n \log \omega)$
for $i=1 \nrightarrow n$

$$
\begin{aligned}
& \text { if } A_{i}==A_{i+1} \quad O(n) \\
& \text { return filose }
\end{aligned}
$$

return trace

Uniqueness problem reduces to sorting problem or hashmap problem

Maximum independents sets

Try to orgaikize carpool
We have six people:JohnRoyPete.Sam(antha)Jess(ica)Ally

Now this group has a lot of infighting and grudges including:

- Ally does not get along with the other girls.
- Sam is divorced from Pete
- John borrowed money from Pete and never paid it back.
- Jess used to date Pete and John so now things are awkward
- John is mad at Roy for screwing up a Warçaft campaign

Carpool problem reduces to the independent sets problem maximally

While (uncolored nodes)
final ind-set B O(x)
color nodes in ind_set $O(n x)$ end

Recursion: What is a recursion

- reducing a problem into a small instance of itself
 them the complete is solved

Tower of Hanoi
Hanoi (n, ire, Rest, twp)
if $(n>0)$
Il move $n-1$ disks to tromp Hanoi $(n-1$, sere, tip: dost \
move $n^{\text {th }}$ disk from ste t def
Hanoi ($n-1$, trap, dst, sic)

$$
T(n)=2 T(n-1)+1
$$

If $T(n)=2^{n}$

1. Guess

$$
\begin{aligned}
& 2^{n}=2 \cdot 2^{n-1}+1 \\
& 2^{n}=2 n+1
\end{aligned}
$$

Guess π (i) $2^{n}-1$

$$
2^{n}-1=2\left(2^{n-1}-1\right)+1=2 \cdot 2^{n-1}-2+1=2^{n}-1
$$

2. Repeated Application

$$
\begin{aligned}
T(n)=2 T(n-1)+1 & =2 \cdot 2 T(n-2)+2+1 \\
& =2 \cdot 2 \cdot 2 T(n-3)+4+2+1 \\
& =2^{i} T(n-i)+2^{i-1}+2^{i-2}+\ldots \cdot 1 \\
T(n)=2^{n}-1=\underbrace{111111}_{n-1 \text { bits }} & =2^{n-1} T(1)+2^{n-2}+\ldots+1
\end{aligned}
$$

$$
T(n)=r T(n / c)+f(n)
$$

3. Characteristic equation and /or amniliators

Divide !Conquer

1. Dividing the problem into smaller parts
2. Taking the results $\&$ merging into a larger glation Merge Sort (A)

$$
\begin{gathered}
\text { if }(n>1) \\
m=n / 2 \\
\text { Mergesort } \cdot(A[1 \ldots m]) \\
\text { Marge Sort }(A[m \ldots n) \\
\text { Merge }(A[1 \ldots n], m) \leftarrow O(n) \\
T(n)=2 T(n / 2)+O(n) \quad O(n \log n) \\
\\
\cdot k_{n}
\end{gathered}
$$

Quicksort :
What is the recurrence
k is the rank of

$$
\begin{aligned}
& T(n)=T(k-1)+T(n-k)+O(n) \\
& T(n)=2 T(n / \varepsilon)+O(n)=O(n \log n) \\
& T(n)=T(n-1)+O(n)=O\left(n^{2}\right)
\end{aligned}
$$

Scrap for predrawn figures

We have six people:JohnRoyPete

Sam(antha)Jessica)Ally
Now this group has a lot of infighting and grudges including:

- Ally does not get along with the other girls.
- Sam is divorced from Pete
- John borrowed money from Pete and never paid it back.
- Jess used to date Pete and John so now things are awkward
- John is mad at Roy for screwing up a Warçraft campaign

