Algorithms & Models of Computation CS/ECE 374, Spring 2019

Proving Non-regularity

Lecture 6 Thursday, January 31, 2019

LATEXed: December 27, 2018 08:25

Theorem

Languages accepted by DFAs, NFAs, and regular expressions are the same.

- Each DFA *M* can be represented as a string over a finite alphabet Σ by appropriate encoding
- Hence number of regular languages is countably infinite
- Number of languages is uncountably infinite
- Hence there must be a non-regular language!

Theorem

Languages accepted by DFAs, NFAs, and regular expressions are the same.

- Each DFA *M* can be represented as a string over a finite alphabet Σ by appropriate encoding
- Hence number of regular languages is countably infinite
- Number of languages is uncountably infinite
- Hence there must be a non-regular language!

Theorem

Languages accepted by DFAs, NFAs, and regular expressions are the same.

- Each DFA *M* can be represented as a string over a finite alphabet Σ by appropriate encoding
- Hence number of regular languages is countably infinite
- Number of languages is *uncountably infinite*
- Hence there must be a non-regular language!

Theorem

Languages accepted by DFAs, NFAs, and regular expressions are the same.

- Each DFA *M* can be represented as a string over a finite alphabet Σ by appropriate encoding
- Hence number of regular languages is *countably infinite*
- Number of languages is *uncountably infinite*
- Hence there must be a non-regular language!

Theorem

Languages accepted by DFAs, NFAs, and regular expressions are the same.

- Each DFA *M* can be represented as a string over a finite alphabet Σ by appropriate encoding
- Hence number of regular languages is countably infinite
- Number of languages is uncountably infinite
- Hence there must be a non-regular language!

Theorem

Languages accepted by DFAs, NFAs, and regular expressions are the same.

- Each DFA *M* can be represented as a string over a finite alphabet Σ by appropriate encoding
- Hence number of regular languages is *countably infinite*
- Number of languages is *uncountably infinite*
- Hence there must be a non-regular language!

Claim: Language *L* is not regular.

Idea: Show # states in any DFA M for language L has infinite number of states.

Lemma

Consider three strings $x, y, w \in \Sigma^*$. $M = (Q, \Sigma, \delta, s, A)$: DFA for language $L \subseteq \Sigma^*$. If $\delta^*(s, xw) \in A$ and $\delta^*(s, yw) \notin A$ then $\delta^*(s, x) \neq \delta^*(s, y)$.

Proof.

How to prove non-regularity?

Claim: Language L is not regular. Idea: Show # states in any DFA M for language L has infinite number of states.

Lemma

Consider three strings $x, y, w \in \Sigma^*$. $M = (Q, \Sigma, \delta, s, A)$: DFA for language $L \subseteq \Sigma^*$. If $\delta^*(s, xw) \in A$ and $\delta^*(s, yw) \notin A$ then $\delta^*(s, x) \neq \delta^*(s, y)$.

Proof.

Lemma

Consider three strings $x, y, w \in \Sigma^*$. $M = (Q, \Sigma, \delta, s, A)$: DFA for language $L \subseteq \Sigma^*$. If $\delta^*(s, xw) \in A$ and $\delta^*(s, yw) \notin A$ then $\delta^*(s, x) \neq \delta^*(s, y)$.

Proof.

Lemma

Consider three strings $x, y, w \in \Sigma^*$. $M = (Q, \Sigma, \delta, s, A)$: DFA for language $L \subseteq \Sigma^*$. If $\delta^*(s, xw) \in A$ and $\delta^*(s, yw) \notin A$ then $\delta^*(s, x) \neq \delta^*(s, y)$.

Proof.

Lemma

Consider three strings $x, y, w \in \Sigma^*$. $M = (Q, \Sigma, \delta, s, A)$: DFA for language $L \subseteq \Sigma^*$. If $\delta^*(s, xw) \in A$ and $\delta^*(s, yw) \notin A$ then $\delta^*(s, x) \neq \delta^*(s, y)$.

Proof.

Lemma

Consider three strings $x, y, w \in \Sigma^*$. $M = (Q, \Sigma, \delta, s, A)$: DFA for language $L \subseteq \Sigma^*$. If $\delta^*(s, xw) \in A$ and $\delta^*(s, yw) \notin A$ then $\delta^*(s, x) \neq \delta^*(s, y)$.

Proof.

Lemma

Consider three strings $x, y, w \in \Sigma^*$. $M = (Q, \Sigma, \delta, s, A)$: DFA for language $L \subseteq \Sigma^*$. If $\delta^*(s, xw) \in A$ and $\delta^*(s, yw) \notin A$ then $\delta^*(s, x) \neq \delta^*(s, y)$.

Proof.

Lemma

Consider three strings $x, y, w \in \Sigma^*$. $M = (Q, \Sigma, \delta, s, A)$: DFA for language $L \subseteq \Sigma^*$. If $\delta^*(s, xw) \in A$ and $\delta^*(s, yw) \notin A$ then $\delta^*(s, x) \neq \delta^*(s, y)$.

Proof.

Proof by figures

$L = \{0^{k}1^{k} \mid i \geq 0\} = \{\epsilon, 01, 0011, 000111, \cdots, \}$

Theorem

L is not regular.

Question: Proof?

Intuition: Any program to recognize *L* seems to require counting number of zeros in input which cannot be done with fixed memory.

$L = \{0^{k}1^{k} \mid i \ge 0\} = \{\epsilon, 01, 0011, 000111, \cdots, \}$

Theorem

L is not regular.

Question: Proof?

Intuition: Any program to recognize *L* seems to require counting number of zeros in input which cannot be done with fixed memory.

$L = \{0^{k}1^{k} \mid i \geq 0\} = \{\epsilon, 01, 0011, 000111, \cdots, \}$

Theorem

L is not regular.

Question: Proof?

Intuition: Any program to recognize *L* seems to require counting number of zeros in input which cannot be done with fixed memory.

$L = \{0^{k}1^{k} \mid i \ge 0\} = \{\epsilon, 01, 0011, 000111, \cdots, \}$

Theorem

L is not regular.

Question: Proof?

Intuition: Any program to recognize *L* seems to require counting number of zeros in input which cannot be done with fixed memory.

$L = \{0^{k}1^{k} \mid i \ge 0\} = \{\epsilon, 01, 0011, 000111, \cdots, \}$

Theorem

L is not regular.

Question: Proof?

Intuition: Any program to recognize *L* seems to require counting number of zeros in input which cannot be done with fixed memory.

- Suppose L is regular. Then there is a DFA M such that L(M) = L.
- Let $M = (Q, \{0, 1\}, \delta, s, A)$ where |Q| = n.

Consider strings ϵ , 0, 00, 000, \cdots , 0ⁿ total of n + 1 strings.

What states does *M* reach on the above strings? Let $q_i = \delta^*(s, 0^i)$.

By pigeon hole principle $q_i = q_j$ for some $0 \le i < j \le n$. That is, M is in the same state after reading 0^i and 0^j where $i \ne j$.

- Suppose L is regular. Then there is a DFA M such that
 L(M) = L.
- Let $M = (Q, \{0, 1\}, \delta, s, A)$ where |Q| = n.

Consider strings ϵ , 0, 00, 000, \cdots , 0ⁿ total of n + 1 strings.

What states does *M* reach on the above strings? Let $q_i = \delta^*(s, 0^i)$.

By pigeon hole principle $q_i = q_j$ for some $0 \le i < j \le n$. That is, M is in the same state after reading 0^i and 0^j where $i \ne j$.

- Suppose L is regular. Then there is a DFA M such that
 L(M) = L.
- Let $M = (Q, \{0, 1\}, \delta, s, A)$ where |Q| = n.

Consider strings ϵ , **0**, **00**, **000**, \cdots , **0**^{*n*} total of n + 1 strings.

What states does *M* reach on the above strings? Let $q_i = \delta^*(s, 0^i)$.

By pigeon hole principle $q_i = q_j$ for some $0 \le i < j \le n$. That is, M is in the same state after reading 0^i and 0^j where $i \ne j$.

- Suppose L is regular. Then there is a DFA M such that L(M) = L.
- Let $M = (Q, \{0, 1\}, \delta, s, A)$ where |Q| = n.

Consider strings ϵ , **0**, **00**, **000**, \cdots , **0**^{*n*} total of n + 1 strings.

What states does *M* reach on the above strings? Let $q_i = \delta^*(s, 0^i)$.

By pigeon hole principle $q_i = q_j$ for some $0 \le i < j \le n$. That is, M is in the same state after reading 0^i and 0^j where $i \ne j$.

- Suppose L is regular. Then there is a DFA M such that L(M) = L.
- Let $M = (Q, \{0, 1\}, \delta, s, A)$ where |Q| = n.

Consider strings ϵ , **0**, **00**, **000**, \cdots , **0**^{*n*} total of n + 1 strings.

What states does *M* reach on the above strings? Let $q_i = \delta^*(s, 0^i)$.

By pigeon hole principle $q_i = q_j$ for some $0 \le i < j \le n$. That is, M is in the same state after reading 0^i and 0^j where $i \ne j$.

For a language L over Σ and two strings $x, y \in \Sigma^*$, x and y are distinguishable with respect to L if there is a string $w \in \Sigma^*$ such that exactly one of xw, yw is in L.

 $m{x},m{y}$ are indistinguishable with respect to $m{L}$ if there is no such $m{w}$.

Example: If $i \neq j$, 0^i and 0^j are distinguishable with respect to $L = \{0^k 1^k \mid k \ge 0\}$

For a language L over Σ and two strings $x, y \in \Sigma^*$, x and y are distinguishable with respect to L if there is a string $w \in \Sigma^*$ such that exactly one of xw, yw is in L. x, y are indistinguishable with respect to L if there is no such w.

Example: If $i \neq j$, 0^i and 0^j are distinguishable with respect to $L = \{0^k 1^k \mid k \ge 0\}$

For a language L over Σ and two strings $x, y \in \Sigma^*$, x and y are distinguishable with respect to L if there is a string $w \in \Sigma^*$ such that exactly one of xw, yw is in L.

x, y are indistinguishable with respect to L if there is no such w.

Example: If $i \neq j$, 0^i and 0^j are distinguishable with respect to $L = \{0^k 1^k \mid k \ge 0\}$

For a language L over Σ and two strings $x, y \in \Sigma^*$, x and y are distinguishable with respect to L if there is a string $w \in \Sigma^*$ such that exactly one of xw, yw is in L.

x, y are indistinguishable with respect to L if there is no such w.

Example: If $i \neq j$, 0^i and 0^j are distinguishable with respect to $L = \{0^k 1^k \mid k \ge 0\}$

Wee Lemma

Lemma

Suppose L = L(M) for some DFA $M = (Q, \Sigma, \delta, s, A)$ and suppose x, y are distinguishable with respect to L. Then $\delta^*(s, x) \neq \delta^*(s, y)$.

Proof.

Since x, y are distinguishable let w be the distinguishing suffix. If $\delta^*(s, x) = \delta^*(s, y)$ then M will either accept both the strings xw, yw, or reject both. But exactly one of them is in L, a contradiction.

Wee Lemma

Lemma

Suppose L = L(M) for some DFA $M = (Q, \Sigma, \delta, s, A)$ and suppose x, y are distinguishable with respect to L. Then $\delta^*(s, x) \neq \delta^*(s, y)$.

Proof.

Since x, y are distinguishable let w be the distinguishing suffix. If $\delta^*(s, x) = \delta^*(s, y)$ then M will either accept both the strings xw, yw, or reject both. But exactly one of them is in L, a contradiction.

Fooling Sets

Definition

For a language L over Σ a set of strings F (could be infinite) is a fooling set or distinguishing set for L if every two distinct strings $x, y \in F$ are distinguishable.

Example: $F = \{0^i \mid i \ge 0\}$ is a fooling set for the language $L = \{0^k 1^k \mid k \ge 0\}.$

Theorem

Suppose **F** is a fooling set for **L**. If **F** is finite then there is no DFA **M** that accepts **L** with less than |F| states.

Fooling Sets

Definition

For a language L over Σ a set of strings F (could be infinite) is a fooling set or distinguishing set for L if every two distinct strings $x, y \in F$ are distinguishable.

Example: $F = \{0^i \mid i \ge 0\}$ is a fooling set for the language $L = \{0^k 1^k \mid k \ge 0\}.$

Theorem

Suppose **F** is a fooling set for **L**. If **F** is finite then there is no DFA**M** that accepts **L** with less than |F| states.

Fooling Sets

Definition

For a language L over Σ a set of strings F (could be infinite) is a fooling set or distinguishing set for L if every two distinct strings $x, y \in F$ are distinguishable.

Example: $F = \{0^i \mid i \ge 0\}$ is a fooling set for the language $L = \{0^k 1^k \mid k \ge 0\}.$

Theorem

Suppose F is a fooling set for L. If F is finite then there is no DFA M that accepts L with less than |F| states.

Proof of Theorem

Theorem

Suppose F is a fooling set for L. If F is finite then there is no DFA M that accepts L with less than |F| states.

Proof.

Suppose there is a DFA $M = (Q, \Sigma, \delta, s, A)$ that accepts L. Let |Q| = n.

If n < |F| then by pigeon hole principle there are two strings $x, y \in F$, $x \neq y$ such that $\delta^*(s, x) = \delta^*(s, y)$ but x, y are distinguishable.

Implies that there is w such that exactly one of xw, yw is in L. However, M's behavior on xw and yw is exactly the same and hence M will accept both xw, yw or reject both. A contradiction.

Proof of Theorem

Theorem

Suppose F is a fooling set for L. If F is finite then there is no DFA M that accepts L with less than |F| states.

Proof.

Suppose there is a DFA $M = (Q, \Sigma, \delta, s, A)$ that accepts L. Let |Q| = n.

If n < |F| then by pigeon hole principle there are two strings $x, y \in F$, $x \neq y$ such that $\delta^*(s, x) = \delta^*(s, y)$ but x, y are distinguishable.

Implies that there is *w* such that exactly one of *xw*, *yw* is in *L*. However, *M*'s behavior on *xw* and *yw* is exactly the same and hence *M* will accept both *xw*, *yw* or reject both. A contradiction.

Proof of Theorem

Theorem

Suppose F is a fooling set for L. If F is finite then there is no DFA M that accepts L with less than |F| states.

Proof.

Suppose there is a DFA $M = (Q, \Sigma, \delta, s, A)$ that accepts L. Let |Q| = n.

If n < |F| then by pigeon hole principle there are two strings $x, y \in F$, $x \neq y$ such that $\delta^*(s, x) = \delta^*(s, y)$ but x, y are distinguishable.

Implies that there is w such that exactly one of xw, yw is in L. However, M's behavior on xw and yw is exactly the same and hence M will accept both xw, yw or reject both. A contradiction.

Infinite Fooling Sets

Theorem

Suppose F is a fooling set for L. If F is finite then there is no DFA M that accepts L with less than |F| states.

Corollary

If L has an infinite fooling set F then L is not regular.

Proof.

Suppose for contradiction that L = L(M) for some DFA M with n states.

Any subset F' of F is a fooling set. (Why?) Pick $F' \subseteq F$ arbitrarily such that |F'| > n. By preceding theorem, we obtain a contradiction.

Infinite Fooling Sets

Theorem

Suppose F is a fooling set for L. If F is finite then there is no DFA M that accepts L with less than |F| states.

Corollary

If L has an infinite fooling set F then L is not regular.

Proof.

Suppose for contradiction that L = L(M) for some DFA M with n states.

Any subset F' of F is a fooling set. (Why?) Pick $F' \subseteq F$ arbitrarily such that |F'| > n. By preceding theorem, we obtain a contradiction.

• $\{0^k 1^k \mid k \ge 0\}$

- {bitstrings with equal number of 0s and 1s}
- $\{0^k 1^\ell \mid k \neq \ell\}$
- $\{0^{k^2} \mid k \ge 0\}$

• $\{0^k 1^k \mid k \ge 0\}$

- {bitstrings with equal number of 0s and 1s}
- $\{0^k 1^\ell \mid k \neq \ell\}$
- $\{0^{k^2} \mid k \ge 0\}$

• $\{\mathbf{0}^k\mathbf{1}^k\mid k\geq \mathbf{0}\}$

- {bitstrings with equal number of 0s and 1s}
- $\{\mathbf{0}^k\mathbf{1}^\ell \mid k \neq \ell\}$

• $\{0^{k^2} \mid k \ge 0\}$

• $\{\mathbf{0}^k\mathbf{1}^k\mid k\geq \mathbf{0}\}$

- {bitstrings with equal number of 0s and 1s}
- $\{\mathbf{0}^k\mathbf{1}^\ell \mid k \neq \ell\}$
- $\{\mathbf{0}^{k^2} \mid k \geq \mathbf{0}\}$

 $L_k = \{w \in \{0,1\}^* \mid w \text{ has a } 1 \ k \text{ positions from the end}\}$ Recall that L_k is accepted by a NFA N with k + 1 states.

Theorem

Every DFA that accepts L_k has at least $\mathsf{2}^k$ states.

Claim

$F = \{w \in \{0,1\}^* : |w| = k\}$ is a fooling set of size 2^k for L_k .

- Suppose $a_1a_2 \dots a_k$ and $b_1b_2 \dots b_k$ are two distinct bitstrings of length k
- Let *i* be first index where $a_i \neq b_i$
- $y = 0^{k-i-1}$ is a distinguishing suffix for the two strings

 $L_k = \{w \in \{0,1\}^* \mid w \text{ has a } 1 \ k \text{ positions from the end}\}$ Recall that L_k is accepted by a NFA N with k + 1 states.

Theorem

Every DFA that accepts L_k has at least 2^k states.

Claim

$F = \{w \in \{0,1\}^* : |w| = k\}$ is a fooling set of size 2^k for L_k .

- Suppose $a_1a_2 \dots a_k$ and $b_1b_2 \dots b_k$ are two distinct bitstrings of length k
- Let *i* be first index where $a_i \neq b_i$
- $y = 0^{k-i-1}$ is a distinguishing suffix for the two strings

 $L_k = \{w \in \{0,1\}^* \mid w \text{ has a } 1 \ k \text{ positions from the end}\}$ Recall that L_k is accepted by a NFA N with k + 1 states.

Theorem

Every DFA that accepts L_k has at least 2^k states.

Claim

$F = \{w \in \{0,1\}^* : |w| = k\}$ is a fooling set of size 2^k for L_k .

- Suppose a₁a₂...a_k and b₁b₂...b_k are two distinct bitstrings of length k
- Let *i* be first index where $a_i \neq b_i$
- $y = 0^{k-i-1}$ is a distinguishing suffix for the two strings

 $L_k = \{w \in \{0,1\}^* \mid w \text{ has a } 1 \ k \text{ positions from the end}\}$ Recall that L_k is accepted by a NFA N with k + 1 states.

Theorem

Every DFA that accepts L_k has at least 2^k states.

Claim

 $F = \{w \in \{0,1\}^* : |w| = k\}$ is a fooling set of size 2^k for L_k .

- Suppose a₁a₂...a_k and b₁b₂...b_k are two distinct bitstrings of length k
- Let *i* be first index where $a_i \neq b_i$
- $y = 0^{k-i-1}$ is a distinguishing suffix for the two strings

 $L_k = \{w \in \{0,1\}^* \mid w \text{ has a } 1 \ k \text{ positions from the end}\}$ Recall that L_k is accepted by a NFA N with k + 1 states.

Theorem

Every DFA that accepts L_k has at least 2^k states.

Claim

$$F = \{w \in \{0,1\}^* : |w| = k\}$$
 is a fooling set of size 2^k for L_k .

- Suppose $a_1a_2\ldots a_k$ and $b_1b_2\ldots b_k$ are two distinct bitstrings of length k
- Let *i* be first index where $a_i \neq b_i$
- $y = 0^{k-i-1}$ is a distinguishing suffix for the two strings

How do pick a fooling set

How do we pick a fooling set F?

- If x, y are in F and x ≠ y they should be distinguishable! Of course.
- All strings in F except maybe one should be prefixes of strings in the language L.
 For example if L = {0^k1^k | k ≥ 0} do not pick 1 and 10 (say). Why?

Part I

Non-regularity via closure properties

- $L = \{$ bitstrings with equal number of 0s and 1s $\}$
- $L' = \{\mathbf{0}^k \mathbf{1}^k \mid k \geq \mathbf{0}\}$

Suppose we have already shown that L' is non-regular. Can we show that L is non-regular without using the fooling set argument from scratch?

$L'=L\cap L(0^*1^*)$

Claim: The above and the fact that *L*' is non-regular implies *L* is non-regular. Why?

Suppose L is regular. Then since $L(0^*1^*)$ is regular, and regular languages are closed under intersection, L' also would be regular. But we know L' is not regular, a contradiction.

- $L = \{$ bitstrings with equal number of 0s and 1s $\}$
- $L' = \{\mathbf{0}^k \mathbf{1}^k \mid k \geq \mathbf{0}\}$

Suppose we have already shown that L' is non-regular. Can we show that L is non-regular without using the fooling set argument from scratch?

$L'=L\cap L(0^*1^*)$

Claim: The above and the fact that L' is non-regular implies L is non-regular. Why?

Suppose L is regular. Then since $L(0^*1^*)$ is regular, and regular languages are closed under intersection, L' also would be regular. But we know L' is not regular, a contradiction.

- $L = \{$ bitstrings with equal number of 0s and 1s $\}$
- $L'=\{0^k1^k\mid k\geq 0\}$

Suppose we have already shown that L' is non-regular. Can we show that L is non-regular without using the fooling set argument from scratch?

$L'=L\cap L(0^*1^*)$

Claim: The above and the fact that L' is non-regular implies L is non-regular. Why?

Suppose L is regular. Then since $L(0^*1^*)$ is regular, and regular languages are closed under intersection, L' also would be regular. But we know L' is not regular, a contradiction.

General recipe:

Proving non-regularity: Summary

- Method of distinguishing suffixes. To prove that *L* is non-regular find an infinite fooling set.
- Closure properties. Use existing non-regular languages and regular languages to prove that some new language is non-regular.
- Pumping lemma. We did not cover it but it is sometimes an easier proof technique to apply, but not as general as the fooling set technique.

Part II

Myhill-Nerode Theorem

Recall:

Definition

For a language L over Σ and two strings $x, y \in \Sigma^*$ we say that x and y are distinguishable with respect to L if there is a string $w \in \Sigma^*$ such that exactly one of xw, yw is in L. x, y are indistinguishable with respect to L if there is no such w.

Given language L over Σ define a relation \equiv_L over strings in Σ^* as follows: $x \equiv_L y$ iff x and y are indistinguishable with respect to L.

Claim

 \equiv_L is an equivalence relation over Σ^* .

Therefore, \equiv_L partitions Σ^* into a collection of equivalence classes $X_1, X_2, \ldots,$

Recall:

Definition

For a language L over Σ and two strings $x, y \in \Sigma^*$ we say that x and y are distinguishable with respect to L if there is a string $w \in \Sigma^*$ such that exactly one of xw, yw is in L. x, y are indistinguishable with respect to L if there is no such w.

Given language L over Σ define a relation \equiv_L over strings in Σ^* as follows: $x \equiv_L y$ iff x and y are indistinguishable with respect to L.

Claim

 \equiv_{L} is an equivalence relation over Σ^{*} .

Therefore, \equiv_L partitions Σ^* into a collection of equivalence classes X_1, X_2, \ldots ,

Claim

 \equiv_L is an equivalence relation over Σ^* .

Therefore, \equiv_L partitions Σ^* into a collection of equivalence classes.

Claim

Let x, y be two distinct strings. If x, y belong to the same equivalence class of \equiv_L then x, y are indistinguishable. Otherwise they are distinguishable.

Corollary

If \equiv_L is finite with **n** equivalence classes then there is a fooling set **F** of size **n** for **L**. If \equiv_L is infinite then there is an infinite fooling set for **L**.

Theorem (Myhill-Nerode)

L is regular $\iff \equiv_{L}$ has a finite number of equivalence classes. If \equiv_{L} is finite with **n** equivalence classes then there is a DFA **M** accepting **L** with exactly **n** states and this is the minimum possible.

Corollary

A language L is non-regular if and only if there is an infinite fooling set F for L.

Algorithmic implication: For every DFA M one can find in polynomial time a DFA M' such that L(M) = L(M') and M' has the fewest possible states among all such DFAs.